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Abstract 
Jos~ is a visually guided autonomous robotic waiter. He 

circulates around a room populated by groups of people, po- 
litely serving appetizers to humans. The serving task com- 
bines elements of robotics with human computer interaction, 
challenging control architecture with multiple task integra- 
tion. This paper describes our purely vision-based approach 
to this task. Methods for mapping, localization and naviga- 
tion are presented and discussed, including issues of safety 
for both robots and humans. Our work on human-robot in- 
teraction is covered, as well as our solutions to various tasks 
specific to serving food. We present results of our methods 
from sample experiments in our laboratory. We further dis- 
cuss our experiences at the 2001 AAAI mobile robot "Hors 
D'oeuvres Anyone ?" competition, at which Jos~ took first 
prize. 

1 Introduction 
This paper is about using vision for autonomous robotics. 

Vision provides rich, high bandwidth, two dimensional data 
containing information about color, texture, depth and optic 
flow, among others. This multi-modal data source can be 
exploited universally for the accomplishment of many dif- 
ferent tasks. It is a harmonious host of information about a 
robot's environment, and is an alternative to more special- 
ized sensors such as sonar or laser range finders. Although 
vision is such a rich data source, it usually requires com- 
plex techniques for the extraction of useful information. For 
example, while sonar data directly estimates depth informa- 
tion, vision data (from multiple cameras) requires a stereo 
matching algorithm. However, the vision sensors can esti- 
mate further properties of environmental structure using the 
integrated color and texture information. 

In this paper, the techniques we have developed for us- 
ing vision are discussed in the context of a particular robotic 
task: serving food to a gathering of people. To accomplish 
this task, a robot must reliably navigate around a room pop- 
ulated by groups of people, politely serving appetizers to hu- 
mans. The robot must also monitor the food it has available 
to serve, and return to a home base location to refill when 
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Figure 1" Josd, the robotic waiter 

the food is depleted. The serving task involves many ba- 
sic aspects of mobile robotics, including localization, map- 
ping, navigation and human-robot interaction. In ongoing 
research, we have developed a solid framework for accom- 
plishing these fundamentals using only vision as a sensor on 
our autonomous robot, Jos~ (Figure 1). Problems specific 
to the serving task were also solved using vision, including 
finding people to serve and monitoring food. 

Previous approaches to the autonomous serving task in- 
clude Alfred [ 10], the winning robot waiter at the 1999 "Hors 
D'oeuvres Anyone?" competition. Jos~ differs from Alfred 
in three respects. First, Alfred relies on sonar for naviga- 
tion, while Jos~ uses only vision. Second, Alfred focused 
on speech recognition much more than Jos~. Although Al- 
fred's speech recognition worked well in the laboratory en- 
vironment, it performed poorly in the crowded, noisy con- 
ference reception hall typical of "Hors D'oeuvres Anyone?" 
competitions [10]. Commercial speech recognition systems, 
as used by both Alfred and Jos~, have not reached the level 
of accuracy needed for conference reception environments, 
and we therefore decided not to rely on speech recognition 
for Jos~. Third, Alfred needed special landmarks for naviga- 
tion, and had lighting and scale dependent landmark recog- 
nition systems. Jos~ uses natural landmarks and a scale and 
illumination invariant recognition system. 
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Figure 2: Control Architecture 

This paper is structured as follows. The next section 
presents an overview of our mobile vision-based robot, 
Jos~, including his hardware systems, and his software ar- 
chitecture which separates control into low, mid and high- 
level behaviors. Sections 3, 4 and 5 present details on these 
three levels. Section 6 shows results from some sample serv- 
ing runs, and discusses our experiences at the 2001 AAAI 
mobile robot competition. Section 7 concludes the paper. 

2 Jos6 
Jos~ is a Real World Interface (RWI) B-14 mobile robot 

equipped with an Intel Pentium PC running the Linux op- 
erating system. Jos~ senses the environment through five 
cameras, three of which are are encapsulated in a Triclops 
stereo vision camera module. Jos~ has a Sony pan-tilt color 
camera, which is used for locating people to interact with. 
A Sony laptop computer mounted above Jos~ supports the 
food tray and its screen displays Jos~'s face. A Logitech 
web-cam keeps watch over the food tray. Jos~ has a Com- 
paq wireless ethernet modem which allows his software sys- 
tems to be distributed. In particular, a second Linux PC 
serves as a host computer running a supervisor module, and 
the laptop computer runs the food monitoring and face gen- 
eration programs. 

Jos~ is driven by a hierarchical behavior-based control 
architecture [1], as shown in Figure 2. The system divides 
the robot's behaviors into three levels, each of which con- 
tains simple, independent, modules. The modularity of the 
system makes implementation and testing simple and effi- 
cient. The lowest level involves perception and motor con- 
trol, and includes servers interfacing with the robot's motors 
and odometry, the Triclops unit, and the color camera. 

The middle level includes modules for the various behav- 
iors the robot needs to perform its tasks. These fall into three 
categories, as shown in Figure 2. 

Mobility: Behaviors which enable the robot to circulate in 
its environment: mapping, localization, and navigation. 

Human-Robot Interaction (HRI): Behaviors for interact- 
ing with humans: finding people to interact with, 
speech recognition and synthesis, and facial expression 
generation. 

Serving: Behaviors specific to the serving task: Planning 
locations for service and monitoring the food tray. 

The highest level is a single supervisor behavior which 
delegates tasks to middle level modules. To ensure scalabil- 
ity of the system, the supervisor runs on a remote computer, 
and communicates with the middle level behaviors through 
sockets. The middle level modules communicate with the 
lowest level through a shared memory architecture. Middle 
and low level behaviors must therefore all run on the robot, 
with the exception of speech recognition, the facial expres- 
sions and the tray monitoring, which communicate directly 
with sensors. 

The following three sections will describe each of the 
three levels in Figure 2. 

3 Perception and Motor Control 
Jos~'s trinocular stereo unit (Triclops) outputs three im- 

ages. The corresponding dense two-dimensional depth infor- 
mation is used as the primary input for map building, local- 
ization, navigation, and people finding behaviors. Triclops 
was developed at the UBC Laboratory for Computational In- 
telligence (LCI) and is being marketed by Point Grey Re- 
search, Inc. (www.ptgrey.com). A Matrox Meteor frame 
grabber connects the Triclops to Jos~. The Triclops stereo 
vision module has 3 identical wide angle (90 ° degree field- 
of-view) cameras, arranged in an k shape. The system is 
calibrated, and corrected for lens distortion and camera mis- 
alignment in software to yield three corrected images that 
conform to a pinhole camera model with square pixels. The 
camera coordinate frames are co-planar and aligned so that 
the the epipolar lines of the camera pairs lie along the rows 
and columns of the images. 

The trinocular stereo approach is based on the multi- 
baseline stereo developed by Okutomi and Kanade [12]. 
Each pixel in the reference image is compared with pixels 
along the epipolar lines in the top and left images. The com- 
parison measure used is sum of absolute differences. The 
results of the two image pairs (left/right, top/bottom) are 
summed to yield a combined score. Multi-baseline stereo 
avoids ambiguity because the sum of the comparison mea- 
sures is unlikely to cause a mismatch--an erroneous mini- 
mum in one pair is unlikely to coincide with an erroneous 
minimum in another pair. Examples of the stereo results are 
shown in Figure 3(a) and (b). Further details on the stereo 
algorithm we use can be found in [11 ]. 

A PCTV frame grabber card delivers color images from 
the Sony pan-tilt unit through the color image server (see 
Figure 2). The color images are registered with the stereo 
images from the Triclops using a offline manual calibration. 
The calibration must be repeated only when the positions 
(relative to the robot) of the color camera or Triclops unit 
are adjusted. We are currently replacing the Triclops and 
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color camera with a single digital color Triclops unit called 
Digiclops (also from Point Grey Research). The Digiclops 
unit, with integrated color and stereo information, will cir- 
cumvent the need for the calibration. 

The RWI robot platform has motor controls for rotation 
and translation, and provides odometry data. Although the 
odometry is fairly accurate, it can lead to serious errors in 
mapping and localization over the time period of a typical 
circulation of the serving robot. Methods for correcting such 
errors are discussed in Section 4.1.2. 

4 M o d e l i n g  and  Task E x e c u t i o n  
This section describes the mid-level behaviors which en- 

able Jos~ to accomplish basic mobility (mapping, localiza- 
tion and navigation), human-robot interaction (people find- 
ing, speech synthesis and recognition, and facial expres- 
sions), and other behaviors specific to the serving task (goal 
planning and tray monitoring). 

4.1 Mobility 
The most fundamental, by no means the simplest, task for 

a mobile robot is moving around in its environment. This 
must be accomplished within certain safety limits for the 
robot. If humans are present (as in the serving task), their 
safety cannot be jeopardized. These constraints are satisfied 
by building an accurate map, localizing the robot, and then 
navigating safely through the mapped environment, as we 
now describe. 

4.1.1 Occupancy Grid Mapping 
Occupancy grid mapping, pioneered by Moravec and 

Elfes [5], is the most widely used robot mapping technique 
due to its simplicity, robustness and flexibility in accommo- 
dating many kinds of spatial sensors. It also adapts well to 
dynamic environments. The technique divides the environ- 
ment into a discrete grid and assigns to each grid location a 
value related to the probability that the location is occupied 
by an obstacle. Initially, all grid values are set to 50%, in- 
dicating equal probability that the grid location is occupied 
and unoccupied. Sensor readings supply uncertainty regions 
within which an obstacle is expected to be. Probabilities at 
grid locations that fall within these regions of uncertainty 
are increased while those at locations in the sensing path be- 
tween the robot and the obstacle are decreased. 

Although occupancy grids may be implemented in any 
number of dimensions, most mobile robotics applications 
(including ours) use 2D grids. Much of the 3D data is lost 
in the construction of a 2D occupancy grid map. The robot 
possesses 3 DOF (X, Y, heading) within a 2D plane corre- 
sponding to the floor. The robot's field of view sweeps out 
a 3D volume above this plane. A projection of all obstacles 
within this volume to the floor uniquely identifies free and 
obstructed regions in the robot's space. 

Figure 3 shows the construction of the 2D occu- 
pancy grid sensor reading from a single 3D stereo im- 
age. Figure 3(a) shows the reference camera greyscale im- 
age (320x240 pixels), and (b) the resulting disparity image. 
Black regions indicate image areas which were invalidated. 
Otherwise, brighter areas indicate higher disparities (closer 
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Figure 3: From stereo images to radial maps. (a) greyscale 
image (b) disparity image (black indicates invalid, otherwise 
brighter indicates closer to the cameras) (c) depth vs columns 
graph (depth in cm) (d) the resultant estimate of clear, un- 
known and occupied regions (light grey is clear, black is oc- 
cupied and dark grey is unknown) 

to the camera). The maximum disparities in each column 
are converted to depth to produce a radial map, as shown in 
Figure 3(c). Figure 3(d) shows these depth values converted 
into an occupancy grid representation; light grey indicates 
clear regions, black indicates occupied, and dark grey in- 
dicates unknown areas. The process illustrated in Figure 3 
generates the input into our stereo vision occupancy grid. 
The mapping system then integrates these values over time, 
to expand the map and keep it current in the changing world. 
We identify an obstacle at all locations in the occupancy grid 
where the value is above a threshold. Figure 10 shows ex- 
amples of occupancy grids generated in this way. 

4.1.2 Localization 
Safe mobility involves simultaneous localization and 

mapping (SLAM). The robot must build a map of the en- 
vironment and track its position relative to that environment. 
However, accurate localization is a prerequisite for build- 
ing a good map, and having an accurate map is essential 
for good localization. This problem has been a central re- 
search topic for the past few years [16, 3, 17, 4, 18]. Our 
vision-based SLAM algorithm uses Triclops stereo data of 
features detected by the Scale Invariant Feature Transform 
(SIFT) [9]. Simply put, Jos~ finds out where he is by recog- 
nizing and locating previously observed visual features in his 
environment. SIFT features are invariant to image transla- 
tion, scaling, rotation, and partially invariant to illumination 
changes and affine or 3D projection. These characteristics 
make SIFT features suitable landmarks for mapping and lo- 
calization, since when mobile robots are moving around in 
an environment, landmarks are observed from different an- 
gles, distances and under different illuminations. Figure 4(a) 
shows an example of detected SIFT features, including scale 
and orientation. 

The SIFT features must be located in three dimensions. 
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Figure 4: (a) SIFT features found, with scale and orientation indicated by the size and orientation of the squares. (b) Stereo 
matching result, where horizontal and vertical lines indicate the horizontal and vertical disparities respectively. 

To accomplish this, we match SIFT features in each of the 
three images delivered by the Triclops system combined 
with epipolar and disparity constraints. Figure 4(b) shows 
the final disparities of all consistent SIFT features. From 
the positions of the matches, and the camera intrinsic pa- 
rameters, we can compute the 3D world coordinates of each 
feature relative to the robot. We maintain a database of the 
located SIFT landmarks and use it to match features found 
in subsequent views. Once the SIFT features are matched, 
we can use the matches in a least-squares procedure to com- 
pute a more accurate camera ego-motion and hence correct 
localization errors. This SLAM results in a 3D map of SIFT 
features, and an accurate position and orientation of the robot 
in the map. The SIFT map presently is separate from the oc- 
cupancy grid, but in principle it can be integrated with the 
grid so that errors due to drift and slippage can be corrected. 
An example SIFT map with over 2000 landmarks is shown 
in Figure 5. Readers are referred to [15] for further details 
of the SLAM technique. 
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Figure 5: Bird's eye view of the SIFT map around base re- 
gion: the home location is indicated by the square with the 
current robot position and view direction shown as a V. 

The database of SIFT features can also be used for global 
localization [14], i.e., determining current position with no 
prior position information. To tackle this problem, we con- 
sider matching a set of SIFT landmarks as a whole. Given a 
small set of current SIFT features and a large set of SIFT 

landmarks in the database, we would like to estimate the 
robot position that would have brought the largest number 
of landmarks into close alignment, provided that the robot 
has previously viewed the current scene during the map 
building stage. We use the RANSAC (RANdom Sample 
And Consensus) method to generate hypotheses of the form: 
(X, Z, 0) where X is the sideways displacement, Z is the 
forward displacement and 0 is the orientation. We select the 
hypothesis with the maximum number of matches and the 
lowest least-squares error. 

Global localization is necessary for serving food when 
the robot must find its way back to a home base to refill 
with food. When a refill is required, the robot navigates by 
dead-reckoning to around 2m away from the home base and 
carries out global localization there. Figure 5 shows the po- 
sitions of robot and home base at this stage. Using the lo- 
calization estimate, the robot can then proceed to the home 
region successfully for refill. 

4.1.3 Navigation 

Given a goal location, the robot position, and the occu- 
pancy grid map, we want to find the shortest and safest path 
connecting the two. The path planning algorithm we use 
is a mixture of shortest path [8] and potential field meth- 
ods [7, 2]. In clear areas, the method operates as a short- 
est path planner with a fixed distance constraint from obsta- 
cles. In cluttered areas, the method turns into a potential 
field planner, to avoid getting stuck. The combination of the 
two allows the robot to navigate efficiently in clear environ- 
ments without getting stuck in cluttered areas. Our navigator 
is described more fully in [11]. 

4.2 Human-Robot Interaction 

We are mainly interested in robotic tasks oriented towards 
people, and devote a significant portion of our research to 
human-robot interactions. We wish to develop natural inter- 
faces for control of and for social interaction with our robots. 
Natural interfaces include speech, gesture and facial expres- 
sion. This section describes our efforts towards enabling 
Jos~ with the capacity to find people in his environment (a 
necessary precursor to interaction) and with natural interac- 
tion behaviors. 
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4.2.1 Finding People 
Humans are distinguished from the environment in a two- 

stage process: skin-color segmentation followed by rejection 
of false positives using the occupancy grid. One feature that 
all people have in common is the hue of their skin. The hue 
of human skin falls in a narrow range which is largely invari- 
ant to a person's skin color. The threshold value is decided 
during a training stage by calculating the mean and standard 
deviation of the hue of a number of sample skin pixels. We 
re-train the system for significant changes of the illumination 
in the operating environment. On average, the hue threshold 
falls around the value 30 -+- 10. 

Jos~ converts RGB color images from the color cam- 
era to HSV color space and segments to select the human 
skin colored pixels. Since the color images are registered 
with the Triclops stereo data (see Section 3), 3D locations 
of skin-colored regions are recovered. These locations are 
then projected to the floor, and used to build a 2D map of 
people locations (see Figure 10 for examples). Some ob- 
jects have hues very similar to human skin (e.g., cardboard 
and wood). Jos~ must differentiate people from such obsta- 
cles to ensure appropriate serving behavior (e.g., so as not to 
serve wooden tables). Fortunately, Jos~'s map, as described 
in Section 4.1.1, is built while he is alone in the area he is 
to operate. Thus, we can compare each selected skin pixel's 
projected floor location against the occupancy grid and ig- 
nore locations that are unoccupied or marked as static ob- 
stacles. Two examples of skin-color detection are shown in 
Figure 9. While the segmentation clearly misses some of the 
skin colored regions in both images, there are no false pos- 
itives remaining after comparison with the occupancy grid 
map. The 2D people location map is integrated over time, 
resulting in a map, Pp(S, t), giving the probability that a per- 
son is at location S at time t. Figure 10 shows examples of 
this map during a typical serving run. 

4.2.2 Interacting with People 
A robot gains acceptance by humans if it allows for natu- 

ral interaction. We have explored interactions between Jos~ 
and his customers using speech and facial expressions. Jos~ 
uses a DoubleTalk speech generation engine to utter pre- 
defined statements. In conjunction with speech, facial ex- 
pressions are displayed with an animated face on a laptop 
screen mounted above the serving tray. Examples are shown 
in Figure 6. The animated face lends expressiveness to the 
speech, thus making interactions with Jos~ more interesting 
for his customers. While many face generation systems use 
complex 3D graphics [10], Jos~'s face is a simple cartoon. 
This allows for fast rendering, and does not detract from in- 
teraction quality, since humans will interact with even the 
simplest of generated faces as a real human face [13]. 

Jos~ has speech recognition capabilities, but has not 
made extensive use of them yet. We chose not to rely on 
speech recognition, as robustness to environmental factors 
has not yet emerged in commercially available products. We 
are also working on facial expression and gesture recogni- 
tion for Jos~ [6]. 

. . . . . . . . . . . . . . . . . . . . . . . .  ~ - - - - _ \ _  

(a) (b) (c) (d) 

Figure 6: Faces coincide with speech (a) "Stop stealing 
food!", (b) "I 'm sorry", (c) "Would you like an appetizer?", 
(d) "I have no food left!" 

4.3 Serving 
The particular task we have used recently as a testbed for 

our vision-based robotic system is that of serving food to 
a gathering of people. This task requires many of the be- 
haviors which have been implemented on our robotic plat- 
form, Jos~. Serving also necessitates some additional task- 
specific behaviors: circulating in a room full of people, 
ensuring coverage (everyone gets served) and making sure 
there is food in the serving tray. This section describes these 
two behaviors. 

4.3.1 Route planning 
Jos~ must plan a route through the environment that en- 

ables him to offer food to candidate humans and to return 
to his refilling station when required. This is accomplished 
using a procedure that dynamically determines the best fea- 
sible goal location. At each time, t, the best goal is defined 
using a dynamic desirability function, 7)(S, t), S c E, where 
E is the spatial extent of the environment. The desirability 
of a location, S, tells the robot the utility of being at position 
S at time t given that the current robot position is Sr (t). A 
goal is chosen as the maximum of the desirability function. 

We calculate the desirability as a weighted sum of the 
people probability map, Fp (/5) (Section 4.2.1), and three cost 
terms C~, Co, and Ch. 

1. The cost associated with locomotion, Co, is given by the 
distance of a path planned to S from the current robot 
position, £~ (t)" C~ - c (£~ (t) ,  £). 

2. The cost of proximity to obstacles, Co, is given by Co - 
mini=0..No S - 6i , where 6i is the location of the i th  

static obstacle (Section 4.1.1). and No is the number of 
obstacles. 

3. The cost of serving at previously served sites, Ch, is 
given by Ch = ~-]~m--~lX m c(m'm'~(t-~)) h ~ where the con- 
stant parameter m c (0, 1) adjusts Jos6's desire to 
serve as many locations as possible, and the constant 
parameter m c (0, 1) discounts the past. The history is 
not considered beyond a horizon mm~×. 

The desirability function is given by: 

- -  a3oC o - -  _ a:cCc, z ~ -  Pp 2 ~ C h  2 

where the weights, w, are parameters specified by the de- 
signer. Figure 11 shows some example desirability maps. 
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Our experiments in various environments have shown that 
maximization of the desirability function produces reason- 
able goals. If no people are detected, Jos~ will wander the 
room in an exploratory fashion. If people are detected, Jos~ 
will try to serve the closest person. The more people that 
are detected, the longer Jos~ will remain in the area to serve 
before moving on. 

Despite this success, we have found that such a primi- 
tive motion model to be insuficient in general. The assump- 
tion that congregation sites remain relatively stationary in a 
typical reception setting was found to be misguided. There- 
fore, a method of dynamically tracking the desired target(s) 
and appropriately adjusting the goal location is important for 
general application, and is a subject of ongoing research. 

4.3.2 Monitoring appetizers 
As shown in Figure 1, Jos~ carries a food tray monitored 

by a Logitech web cam. Monitoring the amount of food al- 
lows Jos~ to detect when someone takes food, and when 
the tray is empty (calling for a return to base). The tray is 
solid black and has a dull texture so that regions containing 
food will have a significantly higher intensity than the back- 
ground, allowing the percentage of food on the tray to be 
estimated using a simple thresholding operation. 

Other objects, such as human hands, occasionally appear 
in the cameras field of view, causing increases in the percent- 
age of segmented pixels. However the amount of food on the 
tray should only decrease as people take food from the tray. 
The amount of food on the tray should increase only when 
Jos~ is at home base for refilling. Therefore, if the num- 
ber of non-black pixels suddenly increases significantly, it is 
likely that some other object has entered the image. How- 
ever, a persistent increase indicates new food on the tray. 

Jos~ keeps a ten second history of the percentages of 
non-black pixels that it has computed for the images. The 
percentage of food on the tray is estimated as the minimum 
of the percentages of non-black pixels in the history. With 
this strategy, an increase in the percentage of non-black pix- 
els will not affect the food percentage unless the increase 
persists for the entire length of the history. 

Figure 7 shows images of the food tray before, during, 
and after, respectively, a person takes food from it. The 

l ..:~: I 

Figure 7: Top row: images taken while a person helps him- 
self to an appetizer. Bottom row: segmented regions. 

top set of images are the images taken by the camera. The 
bottom set of images are the corresponding images result- 
ing from segmentation of food pixels (shown in white) from 

~~ a:-tf°gdt-i_ln-~rtiY n & ~ ~ ~ ~ .  ..... get-location ~ . ~ ~  

~---~ t ........ location ) ~ ~ bervmg ; 

tray 

Figure 8" The state diagram for Jos6's serving behaviors 

tray pixels (shown in black). Before the person takes food 
from the tray (leftmost image), the computed food percent- 
age is 34 %. When the person moves his hand into the view of 
the camera (middle image), to take food, the number of non- 
black pixels increases. However, the computed food percent- 
age remains at 34%. Once the food is removed (rightmost 
image), the computed food percentage drops to 26%. 

5 Planning 
The highest level of control belongs to a supervisor that 

activates mid-level behaviors to achieve the task at hand. The 
behavior of the supervisor is modeled with a finite state au- 
tomaton, as shown in Figure 8. The supervisor remains in 
the start state while the robot waits at the base location for 
food to be placed in its tray. When the tray is filled and the 
goal planner returns a location to serve, the supervisor en- 
ters the to-serve-location state and the supervisor directs the 
navigator to move to the goal location. Once the robot ar- 
rives at the goal, the supervisor enters the serving state, and 
directs the speech and face to offer food. After a brief pause, 
the supervisor checks the amount of food left. If there is still 
food in the tray, the goal planner is again invoked. If there 
is no food left in the tray, the supervisor switches to the go- 
to-base state, and directs the navigator to return back to the 
base. When the robot arrives near the base, the supervisor 
invokes the localization behavior, which globally locates the 
robot and base, allowing a precise move to the base. 

6 Results 
Figures 9, 10, and 11 show data from an example serving 

run performed in our laboratory. Jos6 had previously built 
an occupancy grid, which is shown in Figure 10. The occu- 
pancy grids show unexplored and explored space in dark and 
light gray, respectively, while obstacles are shown in black. 
Jos~ starts at his home base and performs a visual scan of his 
environment. Color, skin segmentations and stereo data from 
this scan are shown across two images in Figure 9. The peo- 
ple finding behaviour locates two groups based on the skin 
segmentations and stereo data, as shown in light-colored pix- 
els overlaid on the occupancy grids in Figure 10(a). The goal 
planner computes the initial desirability function, as shown 
in Figure 11 (a). The parameters for the desirability function 
were set to a~o = 3.0, a~h = 1.0, a~c = 0.2, m = 0.75 and 
h =0 .9 .  

The first goal is chosen as the maximum of this function, 
and is centered on the group of people to Jos~'s right. The 
navigator plans a path to this goal, and Jos~ offers appetizers 
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color images 

skin segmentation 

stereo images 

Figure 9: Two views of Josd's environment from the home 
base as seen though the color camera (top row) and corre- 
sponding skin segmentations (middle row) and stereo depth 
images (bottow row). Note how the positions of the two 
groups of people in these images relate to the 2D people lo- 
cations shown superimposed on the occupancy grids in Fig- 
ure 10 

upon arrival in front of the group of people, as shown in Fig- 
ure 1 l(b). The goal planner incorporates this serving loca- 
tion into the desirability function, as shown in Figure 11 (b). 
The new maximum of the function is centered on the second 
group of people, which becomes the next goal location. Fig- 
ure 10(b) shows Jos~'s path as he navigates to the second 
group and again offers food. Jos~ has now run out of food 
on his tray, and proceeds to navigate back to home base, as 
shown in Figure 10(c). To ensure accurate global localiza- 
tion, he first navigates to a point 2m in front of the base, 
performs the localization, and then navigates to the base, ar- 
riving within 10cm. 

Jos~ was deployed at the Hors D'oeuvres Anyone ? mo- 
bile robot serving competition in Seattle. He detected and 
approached groups of people, knew when his tray was 
empty, and found his way back home to within 10cm. 
Jos~'s face, voice and well-tailored dress were great crowd 
pleasers, evoking many smiles and laughter. Our experience 
at the competition uncovered two facts about the robotic 
serving task. We found that vision alone is sufficient to per- 
form the serving job. We also realized that probabilistic dy- 
namic modeling of people would be a very useful additional 
component to a system for robotic waiting. 

We were initially apprehensive about Josd moving in a 
room full of people without using sonar. Collisions with hu- 
mans in the room would lead to disqualification. However, 
we found that our vision capabilities provided ample real- 
time feedback about the positions of obstacles to allow the 
robot to successfully and safely move and serve. The pri- 
mary reason for these capabilities is the fast, high quality 
stereo data provided by the Triclops system. However, us- 
ing vision data alone does impose constraints. First, stereo 
matching takes time. The result is a bound on the translation 
and rotation speeds that the robot can achieve. Translation is 
limited to avoid collisions. The robot cannot react to objects 
in its path until they appear in the stereo data. Rotation is 
limited because multiple frames are needed to confirm the 
presence or absence of an obstacle. If the robot rotates too 
quickly, the presence and position of an obstacle will not be 
confirmed, and will not appear in the occupancy grid, pos- 
sibly leading to a collision. Translation speed was set to 30 
cm/s, while rotation speed was set to 10 deg/s. While this 
gave fairly satisfactory performance, an increase in speed 
would give a more life-like performance. The second con- 
straint imposed by our stereo vision data is a limited field 
of view, implying a limited amount of map updates which 
can be performed in a time interval. Sonar and laser range 
data avoid this problem with omnidirectional scanning. Ad- 
ditional Triclops units could be used to acheive a larger field 
of view for a vision based robot. 

The Hors D'oeuvres Anyone? competition showed that 
our assumption of static groups of people is not often valid 
in a serving environment. People are dynamic objects, and 
seem to behave in strange ways in the presence of a robot. 
Many of the observed human behaviors were attempts to 
provoke some kind of reaction from the robot: clustering 
around, waving hands in front of the cameras, attempting 
to block Jos~'s path, etc. These behaviors were interpreted 
by Jos~ (perhaps correctly) as attempts to foil his serving 
task. He would remonstrate with the culprits, sometimes to 
no avail. Jos~ currently makes assumptions about the dy- 
namics of people. Jos~ chooses a group of people to serve, 
and then makes his way to the location of the group. Once he 
begins, he does not verify that the group has maintained posi- 
tion, and continues until he reaches his target. In many cases, 
the chosen group moves, often towards Jos~. If they come 
towards him, he perceives them as an obstacle, asks them to 
move, and waits for them to do so. We are currently work- 
ing on simple following behaviors which will avoid these 
kinds of problems. However, a more general dynamic plan 
updating scheme would be an asset. We are currently inves- 
tigating a probabilistic people mapping algorithm. As well, 
we are combining the occupancy grid navigation and obsta- 
cle avoidance with the localization and odometry correction 
provided by the SIFT map. 

7 Conclusions 
We have presented our visually guided autonomous serv- 

ing robot, Jos~. Mapping, localization and navigation issues 
which have been the focus of recent research in our labo- 
ratory were discussed. Human-robot interaction, and serv- 
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Figure 10" Occupancy grids at three times during a serving run. Also shown are the accumulated skin-color maps, and Jos~'s  
trajectory, with an 'x'  marking the home base, and 'o's marking serving locations. 

""~80 200 220 240 2~0 280 seo ~ 8 0  2 0 e  2 2 0  2 4 0  2 ~ 0  2 8 o  3 0 0  

(a) (b) 

Figure 11: Desirability maps at two times during a serving run. 

ing issues were also covered. Our results show that Jos~ is 
capable waiter, combining effective robotic techniques with 
panache and wit, and the delicate savoir-faire of an 61ite 
waiter. Our experiences at the 2001 AAAI Hors D'oeuvres 
Anyone? competition uncovered issues which we are cur- 
rently looking into. These include more dynamic modeling 
of people, better navigation techniques, and more integrated 
speech and facial expression interactions. 
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