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1. INTRODUCTION 
 
     As discussed throughout this book, the next round of planetary missions will require 
increased autonomy to enable exploration rovers to travel great distances with limited aid from a 
human operator. For autonomous operations at this scale, localization and terrain modeling 
become key aspects of onboard rover functionality. Previous Mars rover missions have relied on 
odometric sensors such as wheel encoders and inertial measurement units/gyros for on-board 
motion estimation. While these offer a simple solution, they are prone to wheel-slip in loose soil 
and drift of biases, respectively. Alternatively, the use of visual landmarks observed by stereo 
cameras to localize a rover offers a more robust solution but at the cost of increased complexity. 
Additionally rovers will need to create photo-realistic three-dimensional models of visited sites 
for autonomous operations on-site and mission planning on Earth. 
     Our chapter begins with a formulation of the problem under investigation.  We attempt to 
show the need for vision-based localization and modeling by examining the requirements of an 
upcoming Mars mission.  We in turn formulate our own requirements that are used to guide the 
work to be described subsequently. 
     We proceed by presenting computational intelligence techniques developed at MDA which 
employ a stereo camera to observe Scale Invariant Feature Transform (SIFT) features both nearby 
and on the horizon to localize a rover. Field trial results are provided that show it is possible to 
reduce localization errors to a few percent of distance traveled, a major improvement over 



conventional odometric sensors. Comparisons are made to similar techniques in the literature. 
Some discussion is given to the computational burden of including such a technique on future 
planetary missions. As part of the solution, we have implemented aspects of the vision processing 
algorithms on Field Programmable Gate Array (FPGA) processors, which serve to speed up 
computations for online localization.  
     Next we present a technique developed at MDA to create photo-realistic three-dimensional 
models from stereo image sequences. The technique is voxel-based with color texture mapping. 
The relative localization of image over time is provided by the SIFT-based localization technique 
described above and thus model creation can be easily integrated into our framework. The 
resulting 3D models require very little mass storage and transmission bandwidth compared to the 
original images, and thus are good candidates for sending back to Earth-based operators.  
     The chapter concludes with recommendations for further development and a summary of open 
problems in this area. 
 
 
2. PROBLEM FORMULATION 

 
In this section we introduce the problem under investigation and attempt to show its 

importance to upcoming planetary missions.  In particular, we examine some requirements of the 
European Space Agency’s 2011 ExoMars mission and show how vision-based localization and 
modeling may play a key role in achieving the autonomy necessary to conduct the mission. 

 
2.1 Example Mission Requirements 

The ExoMars Rover is a key element of the ExoMars mission, the first flagship mission of 
the Aurora Programme initiated by the European Space Agency (ESA). The aim of this 
programme is to characterize in detail the Mars biological environment in preparation for future 
missions, including human exploration. Carrying a large suite of exobiology instruments, the 
ExoMars Rover will be capable of operating autonomously, traveling several kilometers over 
rocky Martian terrain, and drilling to collect samples for analysis by the instruments. Planned for 
launch in 2011, the main purpose of the ExoMars mission is to search for signs of past and 
present life on Mars. In a Phase A study performed for ESA, MDA led an international industrial 
team to develop an optimized conceptual design of the Rover, incorporating specialized electrical 
power generation, thermal control, navigation, telecommunications and vehicle control 
subsystems (see Figure 1).   

Table 1 lists some of the requirements for the ExoMars rover taken directly from ESA’s 
System Requirements Document [1].  Based on the requirements of this mission, it can be worked 
out that the nominal mission duration will be 60 sols, with 6 sols per experiment cycle.  
Accounting for the time to carry out the scientific data collection, it can be determined that 2 sols 
will be available to traverse 2 km between sampling locations.  If roughly half the 2 km distance 
is traversed each day, this implies a single mid-course correction can be provided by ground 
operators, but otherwise the rover must function completely autonomously.  Thus, the onboard 
guidance, navigation, and control algorithms must be able to move the rover to a new position 1 
km away.  The ability to localize using on-board functionality is a critical skill. 

This in itself does not imply that a vision-based localization and modeling capability is 
necessary.  In the next section we briefly look at other techniques that could be used to position a 
rover on Mars. 



 
Figure 1:  The European Space Agency's 2011 ExoMars mission provides an example of a next-

generation Mars rover that will require advanced computational intelligence techniques to 
achieve its mission goals.  A team led by MDA developed the proposed design for the ExoMars 

rover shown here. 

 
The Rover shall be able to perform at least 10 Experiment Cycles on the Martian Surface as a 
Nominal Rover Mission. 
The Rover should be able to travel 2 km between consecutive sampling locations. 
The Rover design shall be compatible with only one command cycle from Earth per sol. 
The Rover shall be able to navigate autonomously through the rough terrain defined hereafter. 
The PanCam shall allow the identification of the rover’s position. 
The PanCam shall allow the determination of the rover’s orientation and tilt attitude. 
The PanCam shall support the planning and determination of rover traverse operations. 
The PanCam shall support the construction of local digital terrain models, generated with 
PanCam data. 
The Rover shall not require any ground feedback loops shorter than 24 hours duration. 
During nominal operations the Rover shall be able to continue to operate without ground contact 
for a period of 48 hours without interrupting mission product generation. 
Rover localization shall be performed, providing the 3 axes attitude angles with 1-degree 
accuracy. 

Table 1:  A sampling of requirements for the ExoMars Rover that drive the need for autonomy 
and vision-based computational intelligence [1]. 

 
2.2 Existing Mars Localization Techniques 
     At this stage we must make the distinction between absolute and relative localization.  Known 
absolute localization techniques such as radiolocation and horizon feature matching to elevation 



data provide updates too infrequently to be used throughout a sol [2].  These techniques are more 
appropriate to making corrections at the end of a sol or every few sols.   On Earth we have access 
to the global positioning system but for planetary applications this is not yet available.   
     To localize throughout a sol we typically require a relative localization system that tries to 
estimate the pose of a rover relative to a reference frame attached to the initial pose of the robot.  
No attempt is made to find the correspondence between the initial reference frame and a global 
reference frame.  The frequency of updates from a relative localization system is typically much 
higher than an absolute localization system.  The rest of this section discusses common relative 
localization techniques. 
     Wheel odometry estimates the velocities of each wheel and since they are part of the motion 
control components, utilizing these sensor data is relatively simple and inexpensive. The 
velocities are integrated over time to produce a position estimate. However, wheel odometry is 
extremely prone to slip on natural terrains and this in turn affects the attitude estimate. Many 
studies have proven that localization relying on odometry alone can produce 20%-25% error of 
distance travel in position estimate [3].  The 2003 Mars Exploration Rovers experienced 
considerable slip on occasion, corrupting odometry measurements. 
     Inertial measurement units (IMU) can provide translation and attitude of a rover by using of 3-
axis accelerometers and 3-axis gyroscope rate sensors. Both accelerometers and gyros can 
however be influenced by bias errors which can lead to unbounded growth in error over time.  
Bias fluctuations over an entire sol preclude using an IMU alone. 
     Improved orientation estimates can be obtained by employing a Sun sensor, which compares a 
detected sun vector with internal knowledge of Sun’s expected location based on ephemeris data.  
The inclusion of a Sun sensor was one of the main recommendations after the 1997 Mars 
Pathfinder mission [4].  On hard terrain, a Sun sensor in combination with odometry can provide 
a cheap relative positioning device [5].  For baseline operations, 2003 Mars Exploration Rovers 
employed Sun sensors in combination with other sensors, but estimates of translation relied 
heavily on odometry for which slip was a problem on loose terrain.    
     Stereo cameras have been present on planetary rovers for other purposes, namely obstacle 
detection and avoidance, and modeling.  However, only the recent Mars Exploration Rovers have 
used visual odometry as a technology demonstration (discussed below).  The slow acceptance of 
vision-based localization may be due to limited computational resources and power.   
 
2.3 Problem Statement 
     Based on knowledge of past rover missions and the anticipated requirements for future rovers 
to travel longer distances per sol and to generally perform more autonomously, we make the 
assertion that an improved relative localization system will be needed.  There are several possible 
avenues that might be pursued to provide such a system.  However, given that baseline rover 
operations already rely on stereo cameras for obstacle avoidance and modeling, it is logical to 
attempt to use these same sensors to help improve localization.  This brings us to the top-level 
problem statement: 
 

Develop a vision-based localization system to allow a planetary rover to position 
itself with errors limited to a few percent of distance traveled over a several 
kilometer traverse across unknown terrain. 

 
A consequence of solving the above problem is that it facilitates the solution to another problem:  
creating a high-resolution three-dimensional terrain model of the environment for visualization 
and planning.  Our major focus in this chapter will be on addressing the localization problem but 
as we will see, piggy-backing a vision-based terrain modeling technique is a natural extension 
and thus will also be examined. 
  



3. SYSTEM OVERVIEW 
 
     In this section we present our approach to vision-based localization and terrain modeling.  A 
graphical depiction of the data flow in our system can be seen in Figure 2.  We will describe the 
blocks in this diagram in detail below, but some general comments can be made.  As the title of 
this chapter implies, stereo imagery is used for two purposes:  localization and terrain modeling.  
As we can see there are some steps that are common to these two goals, namely image capture 
and undistortion/rectification.  Moreover, we can see from Figure 2 that terrain modeling relies on 
the output of visual motion estimation.  This is because we seek to create terrain models from a 
moving platform and so data from images taken in different locations must be merged.  Finally, 
although motion planning and obstacle avoidance are beyond the scope of our discussion, we 
point out that the 3D terrain map can be used for two purposes:  situational awareness and 
autonomous motion planning.  To accomplish motion planning the terrain map would first be 
converted to a cost map.  Alternative terrain estimation techniques are discussed in [6]. 
 

 
Figure 2:  Dataflow diagram for vision system. 

 
     The remainder of this section will be devoted to explaining some of the key blocks of Figure 2 
in more detail.  In the interests of brevity, we will not delve into the details of Image Capture nor 
Undistortion/Rectification.  We state simply that the function of the Undistortion/Rectification 
block is to transform the raw images into a rectified form that simplifies stereo processing.  At the 
highest level, the intent is to make the images appear as though they had been produced by a 
stereo camera consisting of two pinhole cameras that are perfectly aligned with one another.   
This requires that the stereo camera undergo a calibration procedure in advance of use to 
determine the appropriate transformation. 
     To illustrate some of the other blocks of Figure 2 we will adopt a running example.  As our 
intended application is vision for a planetary rover, we will use two sets of images obtained by 
the Mars Exploration Rover, Spirit.  These images, shown in Figure 3, were taken by Spirit’s 
Front HazCam on Sol 15 of the primary mission as it approached a rock feature called 
“Adirondack”.  These images are 1024x1024 pixels and the relevant stereo camera parameters 
can be found in the literature.  Figure 3 also shows what the images look like after 
Undistortion/Rectification.  Both the raw and undistorted/rectified images were obtained from the 
MER Analyst’s Notebook web repository [7]. 
 



 
Figure 3:  Two stereo pairs from the Mars Exploration Rover, Spirit.  These images were taken 

on Sol 15 as Spirit approached the rock feature dubbed "Adirondack". Courtesy NASA/JPL-
Caltech. 

 
3.1 Feature Extraction 
     In our implementation of vision-based localization, we attempt to automatically identify and 
track a large number of visual landmarks, or features as the rover moves.  We have chosen to use 
a high level set of natural visual features called Scale Invariant Feature Transform (SIFT) as the 
visual landmarks to compute the camera motion. SIFT was developed by Lowe [8][9] for image 
feature generation in object recognition applications. The features are invariant to image 
translation, scaling, rotation, and partially invariant to illumination changes and affine or 3D 
projection. These characteristics make them suitable as landmarks for robust matching when the 
cameras are moving around in an environment.  Such natural landmarks are observed from 
different angles, distances or under different illumination. 
     Previous approaches to feature detection, such as the widely used Harris corner detector [10], 
are sensitive to the scale of an image and therefore are less suitable for building feature databases 
that can be matched from a range of camera positions. A comparison between Harris corners and 
SIFT features is shown in Table 2.  The SIFT features are detected by identifying repeatable 
points in a pyramid of scaled images. Feature locations are identified by detecting maxima and 
minima in the Difference-Of-Gaussian pyramid. A subpixel location, scale and orientation are 
associated with each SIFT feature.  In order to achieve high specificity, a local feature vector [8] 
is formed by measuring the local image gradients at a number of orientations in coordinates 
relative to the location, scale and orientation of the feature.  The local and multi-scale nature of 
the features makes them insensitive to noise, clutter and occlusion, while the detailed local image 
properties represented by the features make them highly selective for matching to large databases. 
     The function of the Feature Extraction block is to extract a large set of SIFT feature from a 
single image.  Figure 4 shows the over 2000 SIFT features that were identified in Left and Right 
Old Time images in our example.  Each feature is marked with a white box.  The size of the box 
represents the scale of the feature while the rotation of the box represents the orientation of the 
feature.  It is worth noting that features were found at many scales and orientations both near the 
rover and out to the horizon. 



     Although SIFT features are reasonably unique in their description as compared to Harris 
corners, there is an added computational burden associated with their use.  For this reason, we 
have implemented the Feature Extraction block on a Field Programmable Gate Array (FPGA).  
Because this is an implementation detail it will be described below in the section on 
implementation. 

 
 Harris Corners SIFT Features 

Algorithm complexity Easy to detect Complex detection algorithm 
Localization accuracy Sub-pixel Sub-pixel 

Scales Single or multiple scales Multi-scale representation 
Description Image windows Specific local image feature vector 

Correspondence Hard, many mismatches Easy, few mismatches 

Table 2:  Comparison between Harris corners and SIFT features. 

 
3.2 Stereo Feature Matching 
     With known stereo camera geometry, the SIFT features in the left and right images are 
matched using the following criteria: epipolar constraint, disparity constraint, orientation 
constraint, scale constraint, local feature vector constraint and unique match constraint [11].  All 
of these constraints are essentially inequality-type constraints with tunable thresholds.  By 
varying the thresholds we may trade off the number of features against the quality of matched 
features. 
     Because we have exploited the stereo camera geometry, the quality of the matched features is 
typically very high coming out of the Stereo Feature Matching block.  Figure 4 (right) shows the 
over 1000 stereo-matched SIFT features that were found for the Old Time stereo pair in our 
example.  The image shown is the Right image for this pair and each match is marked with a 
white arrow. The tail of the arrow is at the location of the feature in the Right image and the head 
of the arrow is at the location of the feature in the Left image.  Thus, the length of the arrow 
represents the disparity between the Left and Right images.  We can see that the lines are all 
horizontal as expected due to the epipolar constraint and disparity is larger close up and smaller 
far away.  We can also note that matches were only found in the center region of the image.  One 
cause of this can be an imperfect calibration/undistortion/rectification process in the image 
periphery whereby the epipolar and disparity constraints can help avoid making unwanted 
matches away from the center region. 
 

 
Figure 4:  Stereo matching of SIFT features between the Left and Right images at the Old Time in 

Figure 3. 



 
3.3 Temporal Feature Matching 
     Temporal feature matching is typically done in one of two ways:  single frame or multi-frame.  
In single frame matching, a stereo pair is compared only with the previous frame.  In multi-frame 
matching a database is built up and the current frame is compared to the database.  Other authors 
[12] have reported a 28% reduction in rover navigation error when multi-frame matching is used, 
rather than considering each pair of frames separately.  Our preferred approach is to maintain a 
database, but for the planetary application a trade study should be performed to select the most 
appropriate technique.  This is because there is a cost in terms of the additional memory and 
computational cycles needed to maintain and search the database. 
     The function of the Temporal Feature Matching block is to take each of the stereo-matched 
features from the current frame and find the best match in our growing database of features. If a 
feature cannot be found in the database, we add it and assign it an id number. To maintain fast 
access in our implementation, a kd-tree is built online and matching of observed features to the 
database (i.e., data association) is carried out by a best-bin-first search [13].  We have 
experimented with database sizes up to 200,000 features. 
     The actual temporal matching criteria are:  column constraint, row constraint, orientation 
constraint, scale constraint, local feature vector constraint, unique match constraint [11], and 
temporal constraint.  The column and row constraints can be used if something about the camera 
motion is known (e.g., forward movement).  The temporal constraint can be used to limit how far 
back in time a match is allowed.  The unique match constraint, however, is typically the most 
important one and can actually be used in isolation if necessary.  Again, applying stricter 
constraints can allow one to trade number against quality of matches. 
     Figure 5 (bottom) shows some temporally-matched features for our running example.  The 
image shown is the Right/New Time image and temporally-matched and the line connecting the 
previous position (tail) to the current position (head) is analogous to optical flow.  Here roughly 
100 temporal matches were found and we can see the movement of these features is qualitatively 
correct as the rover moved forward from the Old Time to the New Time. 
 

 
Figure 5:  Temporal matching of SIFT features between New and Old stereo-matched features. 

      
3.4 Visual Motion Estimation 
     Once we have completed all of the feature extraction and feature matching steps, we seek to 
estimate the full three-dimensional motion of the camera from the resulting features.  To do this 
we employ a Simultaneous Localization and Mapping (SLAM) approach that has the following 
essential steps: 



1. Predict the camera motion using odometric sensors. 
2. Correct this camera motion using the observations of SIFT features that have been 

temporally-matched to the database.  This is done using a weighted least squares 
technique that accounts for the feature uncertainty.  

3. Update the features in the database (our map) using the final camera motion. 
 
     In more detail, our estimation algorithm is derived from the FastSLAM 2.0 algorithm [14][15]. 
Some modifications were necessary to make the algorithm compatible with our scenario [16]. The 
biggest change to the original algorithm is that we observe a large number, K, of SIFT landmarks 
simultaneously (e.g., K = 500). Unlike other feature-based SLAM work, we typically build 
databases with tens of thousands SIFT landmarks and therefore, standard Extended Kalman Filter 
approach does not work as it cannot handle the monolithic covariance.  We also needed to 
incorporate outlier detection as some of the visual landmarks are inevitably mismatched.  
     We seek to simultaneously estimate the trajectory of a vehicle as well as the states of L 
landmarks. Mathematically this is expressed as the joint probability density for the vehicle 
trajectory and landmarks positions, given all the observations: 
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which we see can be factored into L landmark state-estimators and one vehicle trajectory 
estimator. The vehicle states, up to time t (a.k.a., its trajectory up to time t), is denoted st.  The lth 
landmark state is denoted xl (which is assumed to be stationary). The sensor observations, up to  
time t, are denoted zt. The control inputs (or odometry measurements), up to time t, are denoted 
ut. The data associations, which assign particular observations to particular landmarks, up to time 
t, are denoted αt. 
     As is described in [14][15], a Rao-Blackwellized particle filter will be used to update the 
posterior as new observations are gathered. This type of particle filter uses samples to represent 
uncertainty in the vehicle trajectory. Within each particle (a.k.a., sample), an independent Kalman 
filter [17] is implemented for each landmark in the map. Thus for each landmark (in each 
particle) we are estimating a mean and covariance: 
 

),(~),,,|( )(
,

)(
,

),( m
tl

m
tl

ttttm
l Np Cxuzsx α    (2) 

 
where (m) is the particle index. This has the advantage of not requiring a monolithic filter to 
represent the joint density for the vehicle and all the landmarks.  In our realtime implementation 
to date we have only been able to use a single particle to represent the vehicle trajectory.  
However, having formulated the problem in this way allows more particles to be added later if 
computational resources permit.   
     On the surface, it may seem that SIFT features implicitly handle the data association problem, 
allowing for a simpler estimation algorithm. This is true to a certain extent. However, the data 
association problem does not simply go away. Mismatches do occur and outliers must be detected 
to make Step 2 above work well.  Fortunately, the percentage of outliers tends to be fairly small 
such that throwing away a few observations is tolerable. Our approach to handling outliers has a 
few steps: 

• Avoidance: We sort the incoming observations based on the unique SIFT match criterion 
which tells us how good the SIFT match was and thus how good the data association was. 
We then begin processing the observations from best to worst, stopping after a predefined 



number of non-outliers (e.g., 50). This is also a convenient way to limit the update time in 
feature-intensive scenes.  

• Probability: For each SIFT observation, the probability that the estimated camera motion 
and the old feature position generated this observation is computed. We check that this 
probability is not too small. If it is, the observation is labeled an outlier. 

• Pose Change: As a final resort, we check how much the estimated camera motion 
changes as a result of incorporating each SIFT observation. If it moves too far, the 
observation is labeled an outlier. 

 
If an outlier is detected we undo the incorporation of that observation and proceed to the next one 
in the sorted list.  Other outlier rejection techniques such as RANSAC [18] can be used instead 
and further evaluation is needed to compare the performance.   
     The output of the Visual Motion Estimation block is the full six degree-of-freedom pose of the 
robot.  In our formulation, we are actually estimating the motion of a coordinate frame attached to 
the right camera of the stereo pair, rather than one attached to the robot base. This is purely a 
matter of efficiency; it is more efficient to transform a single odometry measurement to the 
camera frame than K visual landmark observations to the robot frame. It is a simple matter to 
transform the final camera pose back to the robot frame to provide an estimate of the robot 
motion.  We represent the six degree-of-freedom pose of the camera using three numbers for 
position as well as four Euler parameters (a.k.a., quaternions) representing the rotation of the 
camera. It is important to note that there is a constraint on the Euler parameters such that only 
three of these are independent.  One must be careful here because the constraint implies the space 
of robot poses is not a vector space. To handle this we must think of the linearization steps in the 
Kalman filters mentioned above as compounding a ‘small’ rotation vector with a ‘large’ mean 
rotation [19].  
     Note that if odometry measurements are used as the ‘control inputs’, one must carefully 
transform the associated covariance matrix from the robot frame to the camera frame, particularly 
if the camera is on a rotating pan-tilt unit, attached to the robot base.  Table 3 quotes the motion 
estimation results for the running example. 
 

Longitudinal Movement Lateral Movement Rotation 
81 cm (forward) 3 cm (left) 0.5 degrees (clockwise) 

Table 3:  Motion estimated purely from images for the running example.  Three-dimensional 
results were projected to two dimensions. 

 
3.5 Disparity Map and 3D Points 
     To compute disparity maps offline, we use either Point Grey Research’s optimized Triclops 
library based on Sum of Absolute Differences (SAD) algorithm or MDA normalised correlation-
based dense stereo algorithm [20].  Figure 6 shows the disparity map for the New Time image 
pair in our running example.   
     To compute disparity maps online for realtime applications, we use the 3DAware PCI card 
from Tyzx for dense stereo computation. It consists of a DeepSea2 chip, which is an optimized 
hardware implementation of the Census stereo algorithm [21].  As with other stereo algorithms, 
texture is required for stereo matching, and hence there is no match for uniform regions.  The 
Tyzx system can compute dense stereo at 30Hz but is limited to 512x512 resolution.  
     Whether online or offline, a simple pinhole stereo camera model is used to reconstruct the 
dense 3D points from the disparity map.  As the rover moves around, dense 3D points are 
obtained relative to the camera position at each frame. All data sets must be transformed to one 
reference coordinate system before they can be combined together. As mentioned in the section 



on visual motion estimation, we have chosen to use the initial camera pose as the reference and 
all 3D data sets are transformed to this coordinate system using the camera pose estimated for 
each data set.       

 
Figure 6:  Disparity map for New Time image pair. 

 
3.6 Voxel Map and 3D Terrain Map 
     Using all 3D points obtained from the stereo processing is not efficient as there are a lot of 
redundant measurements, and the data may contain noise and missing regions (due to incorrect 
matches or lack of texture). Representing 3D data as a triangular mesh reduces the amount of data 
when multiple sets of 3D points are combined and thus also reduces the amount of bandwith 
needed to send the resulting models offboard (e.g., to Earth).  Furthermore, creating surface 
meshes fills up small holes and eliminates outliers, resulting in smoother and more realistic 
reconstructions. 
     To generate triangular meshes as 3D models, we employ a voxel-based method [22], which 
accumulates 3D points with their associated normals. It creates a mesh using all the 3D points, 
fills up holes and works well for data with significant overlap. The 3D data is accumulated into 
voxels at each frame. Outliers are filtered out using their local orientation and by selecting the 
threshold of range measurements required per voxel for a valid mesh vertex. It takes a few 
seconds to construct the triangular mesh at the end, which is dependent on the data size and the 
voxel resolution. 
     Photo-realistic appearance of the reconstructed scene is created by mapping camera images as 
texture. Such surfaces are more visually appealing and easier to interpret as they provide 
additional surface details. Colour images from the stereo camera are used for texture mapping. 
     As each triangle may be observed in multiple images, the algorithm selects the best texture 
image for each triangle. A texture image is considered to be better if it is captured when the 
camera is facing the triangle directly. If the camera is looking at the triangle at an angle, then its 
quality is lower due to the lower and non-uniform resolution caused by perspective distortion. To 
find the best texture, the algorithm analyses all the images and selects the one that gives the 
largest area upon 2D projection according to the camera pose. 
     Moreover, we need to take into account any occlusion. For example, if there is an object in 
front of the triangle, then the image captured when the camera is facing the triangle directly 
should not be used, as the texture will be for the object in front. The algorithm then selects 
another texture image that gives the second largest area upon projection. 
     Figure 7 shows a textured terrain map for the New Time image pair in our running example.  
The “Adirondack” rock feature is clearly visible in three-dimensions when viewed from this 
perspective.  A three-dimensional model of the Spirit rover was inserted for visualization.   



 
Figure 7:  Terrain map with 3D rover model inserted for New Time image pair.   

 
4. IMPLEMENTATION 
 
4.1 Rover Testbeds  
     We have used two different rover testbeds to date for hardware testing.  Initial testing of our 
methodology was conducted using the rovers shown in Figure 8 (left).  This rover consists of a 4-
wheel chassis developed by the University of Toronto Institute for Aerospace Studies (UTIAS). 
The batteries of the rover are inside the tires to keep the center of gravity low. We have 
developed other hardware and software components to provide the capability of monitoring and 
controlling the rover in its environment remotely. A Bumblebee stereo camera from Point Grey 
Research (PGR) has been integrated into the rover system, with image capture up to 7 pairs per 
second, 8-bit 640x480 greyscale images, 70 degrees horizontal and 40 degrees vertical field of 
view, and Firewire interface.  To increase the effective field of view of the camera, it is installed 
on top of a pan-tilt unit, for capturing multiple images.  The limited computational power of this 
platform required that all images be uploaded to a ground station for processing. 
     Our second testbed is depicted in Figure 8 (right).  The chassis of this rover is an iRobot 
ATRVJr with a custom vision system.  The stereo camera was constructed using a pair of Sony 
DFW-X700 cameras, mounted on a rigid aluminum bar, affixed to a pan-tilt unit.  The images we 
use are 8-bit 1024x768 resolution.  The field of view of the cameras is approximately 45 degrees 
horizontal and 35 degrees vertical.  There are currently two computers on board, a dual Pentium 
III 1 GHz with 1 Gb of RAM (inside the red box) and a dedicated vision computer consisting of a 
Pentium M 1.8 GHz  with 1 Gb of RAM.  The vision computer also houses our hardware 
accelerated vision processing boards, a Tyzx DeepSea2 for dense stereo calculations and an 
AlphaData ADM-XRC board with a Virtex II Xilinx FPGA running our implementation of SIFT 
feature extraction.  There are various other sensors onboard as well:  sonar rangefinders, SICK 
laser rangefinder, DGPS, compass, inertial measurement unit, inclinometer. 
 



 
Figure 8:  (left) Custom rover with Bumblebee stereo camera.  (right) ATRVJr rover with custom 

stereo camera. 

 
4.2 FPGA Implementation 
     The high computational requirements of vision algorithms often limit the amount of distance 
and science that can be safely achieved by rovers equipped with radiation hardened processors.  
In order to speed up performance, we used dedicated hardware such as Field Programmable Gate 
Array (FPGA) for some intensive image processing to offload the processor. 
     For this work, we have implemented SIFT extraction on a Virtex II Xilinx FPGA as it is 
computationally intensive.  The fixed point hardware implementation of SIFT was developed 
based on the floating point software version.  To implement the complex SIFT algorithm directly 
using Very High-Level Design Language (VHDL) would have been a lengthy and time 
consuming task.  A high level environment was needed. 
     System Generator is a software tool for modeling and designing FPGA-based signal 
processing systems in the Matlab-Simulink environment.  Simulink provides a graphical 
environment for creating and modeling dynamical systems.  System Generator consists of a 
Simulink library called a Xilinx Blockset, and software to translate a Simulink model into a 
faithful hardware realization of the model. 
     Even though the majority of the design was created with System Generator, there was coding 
in VHDL for low level processes that were not efficient to do with the Xilinx Block sets (such as 
DMA transfers, memory access routines and wrapper files).  The System Generator design, low 
level VHDL coding and wrapper files were all brought into the Xilinx Integrated Synthesis 
Environment (ISE) software tool.  The final bit file was generated within the ISE environment 
which then could be uploaded to the FPGA for execution. 
     Since the software uses floating point operations, testing was required to convert the software 
implementation to work with fixed point operations.  Furthermore, many of the routines in the 
software version needed to be modified to make the hardware implementation efficient. 
     To extract SIFT features from a 640x480 image, it takes 600 ms for a Pentium III 700MHz 
processor, while the FPGA can do so within 60 ms and leave the processor available for other 
tasks. 
 



5. EXPERIMENTAL RESULTS 
 
5.1 Vision-Based Localization 
     Initially we tested our algorithm offline using rover simulations and image sequences from a 
satellite capture mockup scenario wherein a stereo camera approaches a free-flying satellite. 
Reasonable motion estimates were obtained for numbers of particles between 1 and 300.  
However, computation times for large numbers of particles were too high to provide an online 
estimation technique. Thus, for the moment, our visual motion estimation, implemented on the 
rover depicted in Figure 8 (right) uses a single particle (M=1). This has the effect of not keeping 
the error correlations between landmark positions and the robot pose.  As data association is 
carried out based on the SIFT features, the estimation is not affected adversely by the lack of 
particles.  Our experiments revealed promising preliminary results, likely because our data 
association is reasonably good.  Furthermore, increasing the number of particles still cannot 
guarantee consistent estimation due to the highly non-linear observation model. 
     We have field-tested the above algorithm running online both indoors and outdoors.  Outdoors 
we conducted tests with the rover driving on two types of terrain: sand and gravel. The presence 
of loose terrain was a good test as it often causes odometry to become erroneous. 
 
Indoors: 
     Initial testing was conducted indoors with varying success.  Figure 9 (left) shows the results of 
an average traverse in a lab environment.  Both the robot path and the resulting map are shown 
(projected to ground plane).  In Figure 9 (right) we show an occupancy grid created using a laser 
rangefinder for comparison. In reality the robot's path was a closed loop but we see here that there 
is a large final error. Not surprisingly, there are also errors in the map (even compared to the laser 
map which itself is not perfect). 
 

 
Figure 9:  (left) Estimated rover localization and SIFT map (all projected to ground plane).  

(right) Occupancy grid created using laser-based technique for comparison. 
 
 
Figure 10 shows how the number of visual observations changes throughout the traverse shown in 
Figure 9.  From this plot we can begin to see the difficulty of using this technique in a cluttered, 
indoor environment.  Often the camera got too close to objects to get good stereo matches (due to 
limits on maximum disparity) and the number of visual observations plummeted to zero. 
Similarly, if the camera was pointed at a blank wall, the number of visual observations would 
drop.  With no visual observations, our system essentially defaults to simple odometry. 
     At the other end of the spectrum, if there are too many features, our system can also have 
trouble.  Although we limit the number of observations of previously seen landmarks used in the 



estimation (typically to 50), we still incorporate all new landmarks into the database.  If there are 
a lot of new landmarks seen, then we are sometimes forced to drop camera frames in order to not 
let the localization fall too far behind. 
     We found that most realistic traverses indoors were confronted with periods of few or no 
features.  This was particularly true for hallway traverses with large sections of blank walls. 
 

 
Figure 10:  Statistics on number of visual features observed (blue), used in estimation (purple), 
outliers (green) during traverse shown in Figure 9. Red is used to indicate frames that had to be 

dropped to due to processing limitations. 
 
Outdoors, Sand: 
     A set of field trials was conducted on a sandy surface (10 traverses total).  Figure 11 shows the 
results of an approximately 40 m traverse at maximum speed of 5 cm/s on loose sand.  During 
this run, the motion planning software chose to go left around an obstacle (8 m into the traverse).  
While executing this turn, a considerable amount of slip occurred, causing odometry to be quite 
erroneous in the orientation estimate.  Our visual technique did a much better job of estimating 
the robot path, as can be seen by comparison to GPS. Using a tape measure, the final position of 
the rover was 37.8 m from the start. Visual motion estimation found 39.4 m and GPS found 38.8 
m. The tape measure was taken as ground truth, indicating the visual motion estimation over-
predicted the position by 4% of distance travelled.  However, it should be noted that most of this 
positioning error was in the longitudinal direction (along the line joining the start and final 
positions). Visually, the lateral error was extremely small, indicating that orientation was 
estimated very well throughout the traverse. 
     Similar results were found for all the sandy traverses.  The repeatability of the system was 
found to be quite high across trials. Qualitatively, this was demonstrated by the tracks that the 
robot left in the sand.  An example of this can be seen in Figure 11, where there are actually two 
sets of virtually identical tracks heading to the left (along the marked arrows). 
     Post-analysis revealed that the final position errors during the sand field tests were in part due 
to the fact that odometry was slightly over-predicting distance travelled along the path (even in 
the lab on hard terrain).  Odometry does affect the final visual estimate, particularly if the visual 
features being used are far away (e.g., horizon features).  This slight miscalibration does not 



account for the catastrophic pure-odometry estimation errors of Figure 11.  This over-prediction 
effect was made less severe through further calibration. 
 

 
Figure 11:  (above) Sand test site with arrows indicating path taken by rover.  (below) Path 

estimated by FastSLAM (blue), odometry (red), and GPS (green) on loose sand. 

Outdoors, Gravel: 
     A second set of field trials was conducted on a large gravel area (5 traverses total).  Figure 12 
shows the results of an approximately 120 m traverse at maximum speed of 10 cm/s on gravel.  
Here we found that odometry did not experience isolated positioning errors, as was the case on 
sand, but did experience a systematic error (gradual curve to the left).  All of the trials at this site 
had similar errors, likely due to a slightly higher tire pressure on one side of the rover than the 
other. This systematic error was not observed prior to the field test; it was attributed to changes in 
tire pressure on the test day and hence miscalibration of odometry. 
     Using a tape measure, the final position of the rover was 117.4 m from the start.  Visual 
motion estimation found 116.8 m and DGPS found 117.6 m.  The tape measure was taken as 
ground truth, indicated the visual motion estimation under-predicted the position by 0.5% of 
distance travelled.  Again, most of this positioning error was in the longitudinal direction (along 
the line joining the start and final positions). Visually, the lateral error was extremely small, 
indicating that orientation was estimated very well throughout the traverse. 
     The results of other trials at this site were mixed as we tried to push the system to move more 
quickly and use fewer images.  Increasing the vehicle speed to 20 cm/s, or decreasing the frame-
rate to 1.5 Hz, resulted in decreased performance. 
 

 
Figure 12:  (above) Gravel test site.  (below) Path estimated by FastSLAM (blue), odometry 

(red), and GPS (green) on loose sand. 

 



5.2 Vision-Based Terrain Models 
     Figure 13 shows a model we created from a moving rover that traveled over 40m in a desert in 
Nevada.  The first image in the sequence is shown for the right camera as well as the recovered 
camera motion, from our vision-based localization using SIFT features.  A three dimensional 
model of the rover has also been inserted into the resulting terrain model for visualization.   
 

           

 
Figure 13:  (left) First image in a stereo sequence captured in a desert in Nevada.  (right) 
Terrain model with rover model inserted.  (bottom) Resulting terrain model and motion of 

camera reference frame  

 
 
6. DISCUSSION 
 
6.1 Related Work 
       There have been various works on visual motion estimation for planetary rovers with 
promising results. Semi-sparse terrain maps were constructed and matched successively to obtain 
a vision-based state estimate in [23]. An extended Kalman Filter was then applied to fuse with 
wheel odometry. Experiments at JPL’s rover pit showed that the results had more than double the 
accuracy of the dead reckoning estimate.  
    A maximum likelihood estimation technique for rover localization in natural terrain was 
presented in [24] by matching range maps. Stereo vision generated local terrain range map which 
was matched to a previously generated 3D occupancy map to estimate rover pose. Good 
qualitative results were obtained when tested with Sojourner data, running on-board Rocky 7 
Mars rover prototype.  
     Pixel tracking in stereo image sequences was proposed in [25] to estimate visual odometry in 
outdoor unstructured terrain, with around 4% error over 25 metres. [26] evaluated a similar 
algorithm on the Marsokhod robot on many runs totaling several hundreds of metres and achieved 
about 2% translation error. [27] proposed that a set of concurrent and complementary algorithms 



are required for rover localization, as no single localization algorithm is robust enough to fulfill 
various localization needs during long range navigation.  
   In addition to stereo vision, [28] discussed the use of inertial sensors to estimate camera ego-
motion and to augment stereo tracking on rough terrain. [12][29] showed that even with a robust 
stereo ego-motion method, the system accumulated super-linear error due to increasing 
orientation error. Therefore, they proposed incorporating an absolute orientation sensor to reduce 
the error growth to linear. They achieved 1.2% error in experiments carried out with a prototype 
Mars rover.  This same technique was also used to perform rover path tracking [30].   
     The Mars Exploration Rovers, Spirit and Opportunity, have been using a derivative of this 
visual odometry technology on Mars [31].  Initial demonstrations were conducted on Spirit during 
Sols 175-178 with positive results.  The technique was also used to improve odometry when 
Spirit was forced to drive using only five of its six wheels, although some problems were reported 
during Sols 416-421.  An official report of the results is pending.  The bundle adjustment method 
is also employed for rover localization, by taking a global approach in building an image network 
of the landing site [32].  The images were processed on Earth and incremental adjustments are 
uploaded every sol. 
     Realtime visual odometry results for terrestrial applications have also been reported by [33], 
which uses Harris corners for features.  Our technique differs in that we are actually building a 
database of landmarks.  Realtime SLAM results using SIFT features have recently been 
demonstrated indoors by [34][35] with a monocular camera and much smaller images than ours.    
   Most of the previous work used vision systems for localization only, whereas we also use the 
vision system for 3D modeling. Recently, [36] proposed using stereo images for recalibration and 
also for reconstructing 3D terrain models which were texture mapped with the original images. 
They have carried out preliminary experiments to create digital elevation maps at the ESA 
planetary terrain testbed.  The model was then used to plan a trajectory for the Nanokhod rover. 
However, their vision system was part of the lander, not on-board of the rover. Therefore, the 
terrain map generated will be limited to the surroundings of the landing site only. 
 
6.2  Advantages/Disadvantages of Approach 
The key advantages of our localization approach are: 

• Stereo cameras and odometry are already baselined on most future rovers and as such no 
new sensors need be added to enable vision-based localization. 

• Our approach does not rely on any artificial infrastructure to localize and hence can be 
used far away from a lander for long-range science missions.  

• Highly distinctive SIFT features are used as visual landmarks, enabling the repeated 
identification of landmarks to be quite robust. 

• A Simultaneous Localization and Mapping (SLAM) approach is used for motion 
estimation (as opposed to single-frame odometry).  This allows landmarks to be tracked 
over an arbitrary number of images frames and thereby help reduce accumulation of 
error. 

• A probabilistic algorithm is used to estimate the rover’s pose from a large number of 
landmarks.  Through this approach observations of landmarks both near by and on the 
horizon may be combined as we can account for the quality of each landmark 
individually. 

 
The current disadvantages of our localization approach are: 

• The extraction of SIFT features requires considerable computational effort.  We have 
been addressing this through implementation of core vision components on FPGA in 
preparation for flight. 



• Although our vision-based localization was formulated using a derivative of the 
FastSLAM 2.0 algorithm, we have found the use of more than a single particle to 
represent the rover’s trajectory to be computational too expensive.  Our experimental 
results have shown with a single particle we may still achieve reasonable results. 

 
The key advantages of our terrain mapping approach are: 

• It can be seamlessly integrated with our vision-based localization technique and hence 
terrain models can be created while the rover is in motion (as compared to relying on a 
stationary camera). 

• Through the use of an efficient voxel representation of the models, terrain maps for both 
visualization by ground operators and cost maps for autonomous operations can be 
generated. 

• The resulting visualization models (with texture mapping) can be transmitted over a 
communication channel at a greatly reduced bandwidth than all of the raw image sources. 

 
The key disadvantages of our terrain mapping approach are: 

• The computational burden of generating disparity maps, voxel maps, and texturing is 
reasonable high and may require some steps to be implemented in hardware for flight 
operations. 

 
6.3  Flight Readiness 
     Our results to date are preliminary.  The biggest technical obstacle to overcome in preparing 
for flight is keeping the computational burden within the expected envelope for future missions.  
We have begun to address this through the implementation of SIFT feature extraction on a FPGA, 
but it is likely that this idea will need to be extended to some of the other blocks in Figure 2 such 
as undistortion/rectification, stereo feature matching, disparity maps.   
     The visual odometry results of the Mars Exploration Rovers will hopefully provide enough 
evidence to baseline some form of vision-based localization on the next round of Mars missions.  
We have, for example, baselined vision-based localization in our preliminary design of the 
ExoMars rover shown in Figure 1.  For our approach to be seriously considered it will be 
important to show our algorithms working on a representative avionics box, rover and natural 
terrain.  We are working towards this end and feel it is realistic to expect the technology to be 
ready for a 2011 flight. 
     The operational risk of using a vision-based localization technique would seem to be 
reasonably low when compared to autonomous obstacle avoidance and route planning.  
Moreover, vision-based localization may actually reduce the risk of using some of these other 
computational intelligence technologies due to improved knowledge of rover location.  
 
 
7. CONCLUSIONS AND FUTURE WORK 
 
     We have demonstrated the ability for a rover to use a stereo camera and SIFT features as the 
landmarks for efficient localization and terrain mapping. The resulting online visual motion 
estimation was used for autonomous outdoor rover traverses up to 120 m long on loose terrain. 
The final positioning errors were 0.5% to 4% of distance travelled, a major improvement over 
using odometry alone.  We plan to carry out more extensive experiments with the use of a 
surveyor’s instrument to establish better ground truth in the future. 
     We have constructed terrain models in many environments, both artificial and natural 
including underground mines and buildings.  We have also begun to address the computational 
requirements of our approach by implementing one of the core vision blocks on a FPGA.  All of 



these preliminary findings have shown promise and hence we continue to develop our vision 
technologies for planetary rovers.   
     In terms of our estimation algorithm, a future step in our work is to incorporate loop-closure 
detection and possibly backwards correction [37]. This could be incorporated in our outlier 
detection scheme as the number of outliers tends to spike when loops are closed. This is because a 
large number of SIFT matches are made but not in the expected locations. If loop closure can be 
robustly detected, we could switch to a ‘kidnapped robot’ scenario to reset the localization and 
make corrections backwards in time. Work must also be done to prune and rebalance the kd-tree 
to allow significantly longer operation of the algorithm. We also seek to make our approach more 
robust to the translation and rotation that can occur between consecutive images. Currently, we 
can tolerate only small translations and rotations.  For practical applications we would like to be 
able to move 1 m in translation and 20 degrees in rotation. This would make the algorithm 
efficient enough for planetary exploration, where computational resources are scarce. 
     We are also currently building a prototype of the ExoMars rover design shown in Figure 1 that 
will be used to further test our vision-based localization and terrain modeling.  We plan to 
conduct long-range (i.e., traverses of kilometers) field trials with this new rover during the 
summer of 2006 in a Mars-like environment (possibly Haughton Crater in the Canadian High 
Arctic). 
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