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Abstract. Crosswalks and stair-cases are useful road features
for outdoor navigation. In this paper, crosswalks and stair-
cases are detected by looking for groups of concurrent lines,
and edges are then partitioned using intensity variation infor-
mation. To distinguish them, three methods are developed to
estimate the pose: a homography search approach using an
a priori model, and finding the normal using the vanishing
line computed from equally spaced lines and likewise with
two vanishing points. These algorithms, with error analysis
carried out, have been applied to real images with promising
results, and they are also useful in other shape-from-texture
applications.

Key words: Crosswalk detection — Stair-case detection — Van-
ishing point — Vanishing line — Homography

1 Introduction

The problem we discuss here arose originally as part of the
navigation function of a mobility aid [14,15], which aims to
provide a full mobility and navigation capability for partially
sighted people. Crosswalks and stair-cases are useful environ-
mental landmarks that the partially sighted need to be made
aware of.

In this paper, we aim to detect the presence of crosswalks
and stair-cases in road scenes. The detection algorithm is out-
lined in the next section. In Sects. 3, 4 and 5, three methods are
described to estimate the pose from the texture lines detected,
so that these two types of structures can be distinguished. Re-
sults and comparison among the three methods are presented in
Sect. 6. Novel algorithms are developed to estimate the orien-
tation of the structures from a set of parallel lines and compute
the vanishing line from a set of equally spaced parallel lines.
As a real application, it is crucial to know how reliable the
estimation is, therefore, error analysis is carried out in Sect. 7.

Correspondence to: S. Se (e-mail: sse@mdrobotics.ca)

2 Crosswalk detection

A crosswalk consists of an alternating pattern of black and
white stripes, which can be considered as a group of con-
secutive edges. Crosswalk edges are parallel to each other in
3D space. Weak perspective does not apply because there is
considerable variation in depth between the top and bottom
stripes. Therefore, when they are projected onto the image,
these edges will intersect at a vanishing point (provided that
they are not fronto-parallel to the image plane). It is logical to
search for concurrent lines when looking for a structure that
originally consists of parallel lines.

2.1 The detection algorithm

There are two approaches to finding concurrent lines. The first
approach is to search for vanishing points using the Hough
transform [1,4,17,19]. After obtaining straight lines using the
Hough transform, we can apply another Hough transform to
find the intersection of these straight lines. However, Collins
and Weiss considered the vanishing point computation as a
statistical estimation problem and observed that this approach
is not reliable when not many lines are passing through that
point [6]. The accuracy level degrades notably as the number
of lines drops from 20 down to 5.

The second approach, similar to Utcke [20], is employed
here where potential groups of candidate lines are generated
and then tested for coincidence. The Canny edge detector [5]
is applied to the image to detect the edge points, followed by
Hough transform line fitting to obtain lines. RANSAC (ran-
dom sample consensus) [9] is employed to find a group of
lines satisfying the vanishing point constraint, by eliminating
outlier lines. A least-squares procedure is then used to find the
vanishing point, i.e., the intersection point among this group
of lines [18].

2.2 Edges partition

Using this technique based on the vanishing point constraint,
we obtain a hypothesis for some structure containing parallel
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Fig. 1a-d. A typical crosswalk. a Original image with detected edges overlaid. b Line detection result. ¢ Side lines detection. d Same as a but

with side lines removed

a b

Fig. 2a-d. Other crosswalk images. Detected edges are partitioned and overlaid on the original images

lines. To verify that the structure is a crosswalk, we add a fur-
ther constraint that it consists of an alternating pattern of black
and white stripes. In fact, the edges can be partitioned into two
sets of equally spaced parallel lines, corresponding to light-
to-dark and dark-to-light transitions. This is a much stronger
constraint compared to merely searching for structures with
parallel lines. For instance, in some Legoland scenes where
there are a lot of structures with parallel lines, many hypothe-
ses will be found and this constraint is useful to eliminate the
false ones.

Intensity variation is considered here as a cue on which to
base the partition, i.e., to detect changes of intensity from white
to black and from black to white. To facilitate the position
extraction of these changes, we use the average intensity to
threshold the image first. Afterward, the intensity profile across
the crosswalk clearly exhibits a pattern of ups and downs,
where changes can be localized easily.

2.3 Detection results

We are most interested in regular crosswalks whose centre-
lines are perpendicular to the stripe pattern. Figure 1a shows a
typical crosswalk of 320 x 240 image resolution, and the line
detection result is shown in Fig. 1b. Using the intensity vari-
ation, we partition the edges into two groups. The edges are
overlaid on the image in Fig. 1a with the dark-to-light transi-
tions marked in white and the light-to-dark transitions marked
in black.

It can be seen that some detected lines do not fit the actual
edges too well. This is due to slight image distortion and inter-
ference from side edges. Therefore, we find the two side lines
first in the orthogonal quadrant direction and remove them be-
fore the detection. Figure lc shows the two side lines found

while Fig. 1d shows the new result where the real edges are
fitted much better. More results are shown in Fig. 2.

However, the endpoints of the edges now are less accurate,
because the side lines do not fit the actual side edges too well;
therefore, removing the side lines also discards some edge
points. It is because the road surface is not flat but slightly
curved, with the curb sides a bit lower so that rain water drains
into the gutters.

2.4 Stair-case detection

This algorithm also works for stair-cases because stair-cases
are characterized as a sequence of steps, which can be regarded
as a group of consecutive parallel edges. The detection algo-
rithm above has been applied to various indoor and outdoor
stair-case images, with some results shown in Fig. 3. We can
see that stair-cases are detected successfully by finding groups
of coincident lines.

Stair-case edges can also be partitioned into two groups of
edges (concave and convex), as an alternating intensity pattern
corresponding to the tread and riser of the stair-case steps can
be observed.

We show in Fig. 4 an image sequence in which a user
walks towards a stair-case. Using the algorithm above, concave
and convex edges are found and overlaid on the images with
convex edges marked in white and concave ones marked in
black. It can be seen that the partition is stable, with most
edges correctly classified.

The stair-case edges form a virtual slanting plane; there-
fore, both crosswalks and stair-cases can be considered planar.
As a result, using concurrent lines as the image feature with
intensity variation is not sufficient to distinguish these two
types of parallel structure. They are both useful road features
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Fig. 4a-d. Image sequence overlaid with the concave and convex edges found on the stair-case. Convex edges are marked in white while

concave ones are marked in black

for outdoor navigation, but it is necessary to distinguish them
to react differently.

Since all crosswalks lie on the ground while stair-cases do
not, pose information will allow us to differentiate them. If the
parallel structure with alternating pattern also has a null slope,
then it is confirmed as a crosswalk, otherwise it is a stair-case.
‘We will now look at some pose estimation techniques for these
two types of structure in the following sections.

3 Homography search

We use a search approach which is similar to Witkin’s search
for tilt and slant from texture [21]. However, in the general
shape-from-texture literature [3,10-12,21], isotropy of tex-
ture is assumed. In Witkin’s case, a maximum likelihood esti-
mator is derived to compute the tilt and slant, which will give
the best isotropy texture on back-projection. He did not assume
natural textures to be particularly uniform, but assumed that
their non-uniformity does not mimic projection. However, if
the true texture is not isotropic, but has a preferred orientation,
it mimics a projected image, and therefore it is impossible to
detect the true orientation.

For both crosswalk and stair-case structures, we can con-
sider the edges as a textured plane. Since the orientation of
each edge is the same, the texture is anisotropic, and therefore
an a priori model is required. The model we adopt here is a
group of non-skewed parallel horizontal lines on the image
when it is facing the camera.

The shape-from-texture for our textured plane is a more
constrained problem than a general textured surface, as there
are only two rotational pose components: one around the ver-
tical axis (vertical rotation #); the other around the horizontal
axis (slope ¢).

Once we have obtained the vertical rotation 6 and slope ¢,
we can compute the tilt 7 and slant o parameters, which are of-
ten used in the shape-from-texture literature, by the following
equations:

1
r=tan ! [ —— ;
tan ¢ sin 0

Our aim is to transform the image to another view by a
homography so that the camera in the new view will be facing
the structure directly. We employ criteria based on our model
while we search in a discretized space of (6, ¢).

o = cos™ !(sin ¢ cos ).

3.1 The homography

Here, we look at the transformation of an image of one view
to another view induced by a plane. Based on the initial world
coordinates frame, the equation for a plane 7 is

N'X = X N = d, (D

where IV is its normal. The relationship between the old view
coordinates X ; and the new view coordinates X 5 is given by
X 2 = RX 1 + t,

where R is the rotation matrix and ¢ is the translation vector.
From this, we obtain

td
Xo=RX, + q
tINTX tN'T
= RXl—‘rTl — (R+ T)Xl,

and this homography can be expressed as
T

t
o= | R+ x1 = Hx, )
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Fig. 5. Relationship between the two views V1 and V2 defining the
rotation matrix R and translation vector ¢ in the homography

where 1 and x5 are normalized image coordinates [8]. From
Fig. 5, in order to make the camera face the structure directly
in the new view V2,

cosf 0 sinf
R= 0 1 0
—sinf 0 cos @

)

and t = (—X cosf — Zsinf,0, Xsinf + Z — Zcosh) ',
where (X,Y, Z) is the 3D position of the structure which
has been detected and localized. For a planar structure with
vertical rotation 6 and slope ¢, the surface normal N is
(sin ¢ sin 0, cos ¢, —sinpcos B) . As its position (X,Y, Z)
is found and lies on this plane, we have d = X sin ¢ sin 6 +
Y cos¢p — Zsin¢cosb.

This homography holds provided that we are working with
normalized coordinates. Therefore, the coordinates should be
normalized before applying the homography transformation
and denormalized afterward. To normalize the coordinate sys-
tem, we need to determine the matrix K which takes the old
image coordinates 1m,1q and gives the normalized coordinates
Mpew; 1.€., Mpew = KMgiq.

Similarly, we have the projective relationship between the
image coordinates and the world coordinates M , i.e., mqq =
P, qM. Therefore, we have

Mpew = KPoldM = PnewM~
Myew Will be the normalized coordinates if

1000
0100
0010

Pnew:

Referring to Fig. 6, to transform from the world coordi-
nates (X, Y, Zw) to the image coordinates (u, v), we have

u Xw
Y
v = Mint Mproj Mrot 7 ) (3)
1 w
1
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Fig. 6. Transformations between world coordinates and image coor-
dinates

where
(1) coga sir(l)ag S
Mot = 0 —sina cosa 0 » Moroj = (0)(1)(1)8 7
0 0 01
[ fky 0 ug
Mint = 0 _fkv Yo ’
L O 0 1

where « is the camera tilt, fk,, and fk, are the focal intrinsic
parameters, and (ug,vg) are the intrinsic coordinates of the
image centre. Expanding Eq. (3) above, we have

P4
[k —ug sin a Ug COS Qv 0
= 0 —fkycosa—wvysina vgcosa — fk,sina 0| ;
0 —sin« cos « 0

and since P = K P4, the normalizing matrix K is

i T
cosQa Vg .
K = — Fhn Tk cos o — SIn &
smo vy .
— fkv fk'u Sin «v + cos &

Hence, the homography for our coordinate system is ex-
pressed as

Yo = K_lH(97¢)Ky17 (4)

where y, and y, are our image coordinates in the old and new
views respectively.

3.2 Search criteria

There are two components of our model-based search criteria:
one for the vertical rotation and the other for the slope.

From Fig. 7a, b, c and f, the criterion for the correct vertical
rotation is based on how horizontal the transformed texture
lines are. This can be expressed as searching for # which gives
the lowest sum of squares for the slopes of the image lines.
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Fig. 7a—f. Search criteria. a Original texture edges. b The transformed edges when the predicted vertical rotation is below the true value. ¢
The transformed edges when the predicted vertical rotation is above the true value. d The transformed edges when the predicted slope is below
the true value. e The transformed edges when the predicted slope is above the true value. f The transformed edges when the predicted vertical

rotation and slope are correct

At the correct vertical rotation, the camera will be facing the
stair-case edges head-on and so horizontal edges are expected.

From Fig. 7a, d, e and f, the criterion for the correct slope
is based on how skewed the transformed textures lines are.
The correct one will correspond to the case when the mid-
points of all the texture lines lie on a vertical line. We measure
the standard deviation for the u-coordinates of the image line
midpoints and search for ¢ which gives the lowest standard
deviation.

We observe that how horizontal the lines are is only de-
pendent on the vertical rotation but independent of the slope,
so the algorithm can proceed in two stages. Firstly, we as-
sume an arbitrary value for ¢, and perform a one-dimensional
search on 6 using the vertical rotation criterion. Knowing 6,
we then proceed as another one-dimensional search on ¢ using
the slope criterion.

This reduces the complexity of the search algorithm as
two one-dimensional searches are performed instead of one
two-dimensional search. To reduce the complexity further, we
can employ a coarse-to-fine search strategy [18]. Furthermore,
instead of a full-range search, some gradient-descent scheme
can be employed.

3.3 Ill-conditioned case

The search algorithm fails to determine the slope when the
vertical rotation is 0°, i.e. when the camera is facing head-on
to the structure. Looking at the homography in Eq. (2), when
0 =0°,

0 -X
n=/| cos¢g |, t=1] 0 |,
—sin ¢ 0

100
H=R=|010
001

The homography equals the identity matrix irrespective
of the hypothesised slope ¢, so the transformed lines are the
same whatever ¢ is. The search always determines the vertical
rotation but fails to find the slope if the vertical rotation turns
out to be zero.

4 Vanishing line

During the detection stage, we have partitioned the edges into
two groups corresponding to the two intensity transitions. For

each group, we can use the fact that they are equally spaced
to compute the vanishing line of that plane to estimate its
normal. The normal in general gives information about its
slope and vertical rotation, but when the plane is horizontal, it
only provides the slope.

4.1 Vanishing line and normal

A 3D point X is projected to camera coordinates x = fX /Z.
For a very distant point X on plane 7 given by Eq. (1),
m-N:limﬁ:O. (5)
Z—00

Its image pixel coordinates is given by u = Cx, where C
is the intrinsic camera parameters matrix. Substituting =
C 'uintox T N =0, wehaveu  C~ ' N = 0.

As a vanishing line is the projection of a line at infinity,
u, the projection of X, will be lying on the vanishing line;
therefore, the vanishing line I, is defined as follows:

l.=C "N. (6)
Then we can determine the normal:
N = [Nx,Ny,Nz|" =CTl. (7)

A dot product with the normal of the ground plane (0, 1,0)
allows us to compute the slope. As our camera system is tilted
downwards by «, the estimated slope ¢ is given by

Ny

qS:cos*l(W

) —a. @®)

4.2 Conjugate translation transformation

Using homogeneous coordinates, the homography from
Eq. (2) is of the form

.
H=C<R+ﬂ:§> c!

for non-normalized image coordinates.

For the pattern of parallel lines, we are only translating
in direction t perpendicular to the lines along the plane, so
R=1,

tN'" 1
H=cC (I + d) Cl'=1+ 3(Ct)(NTC—1).
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Fig. 8. The pencil of equally-spaced edges together with the vanish-
ing line

Let v = C't, where v is the vanishing point of the translation
direction, and from Eq. (6), N Tct = l;, we have
H=1+ )\l

where ) is a scalar representing the magnitude of translation.
Because the direction of translation is perpendicular to the
plane normal,
0=t-N=t'C'C'N

=(Ct)"(C""N)= vl =0.

4.3 Finding the vanishing line

For the three equally spaced lines in Fig. 8, the conjugate
translation transformation derived above can be used to obtain
l5 and I3 from 1;:

Iy < Uy + Moov 1y, )
I3 < Uy + 2Moov 1, (10)

where o< denotes ‘equal up to a scale’.

Since all these lines are parallel in 3D, they pass through
some vanishing point a in the image. As the vanishing line
also passes through a, we can express the vanishing line as
a linear combination of any two lines using the concurrency

property:
loo = Bls +71s. (1D

Taking the vector product of Eq. (9) with I, and Eq. (10)
with I3, we obtain the following:

LA+ ul ANl =0, (12)
LN+ 2uloo N3 =0, (13)

where ;1 = Av "1;. Taking the vector product of Eq. (11) with
l5 and then with 13, we obtain the following:

loo Ny =vl3 Nlo; (14)
loo N3 = Bly N3, (15)
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From Eqs. (13) and (15), and similarly from Eqgs. (12) and 14,
we further obtain the following:

3= _i(ll Nlg) - (lg/\l3)
2[1, |l2/\l3|2 ’
_ _l(ll /\lg) . (l3 /\l2)

oo s AL

Substituting these back into Eq. (11), we obtain

loo x [(ll AN l3) . (l2 N lg)]lg + 2[(l1 A l2) . (l3 /\lg)}lg.
(16)

5 Two vanishing points

A vanishing point provides a constraint on the orientation of
the plane. Two such independent constraints define a vanish-
ing line and determine the orientation of the plane uniquely.
This method is commonly used to obtain the vanishing line
in various applications such as Criminisi et al. [7]. In [13],
two sets of parallel lines are used to find the vanishing line
followed by applying additional constraints for rectification
of projective images.

Since selecting a group of lines which converge in the
image at a vanishing point is the criterion for our detection
algorithm, we have the first vanishing point. In Sect. 2.3, we
detected the two side lines of a regular crosswalk, which are
parallel in 3D, converging at another vanishing point. Hence
we have two vanishing points for this plane. Equation (5) gives
us the vanishing line on the image plane: *Nx + yNy +
fNz = 0, where (x,y) are the camera coordinates, f is the
focal length and [Nx, Ny, Nz| " is the normal.

Assuming the first vanishing point is (u1, v1), the second
vanishing point is (uz, v2) and the image centre is at (ug, vg),
the vanishing line equation is

y = (vo—va)/ky _ (vo—v1)/ky = (vo — v2)/ky
z— (uy —uo)/ky  (ur —uo)/ku — (uz — o) /ku’
where k,, and k, are the pixels-per-unit-length parameters for

the u and v coordinates respectively. For square pixels (k =
k., = k), this gives

(vg —v1)x + (U2 —uy)y
(u2 — ug)(v1 — v2) — (vo — v2)(u2 —w1)
+f 2 — up)(v1 2fk o — v2)(uz 1

The normal of the plane is found and its slope is estimated
using Eq. (8).

=0.

6 Results and comparison

For each crosswalk image shown above, we apply these three
techniques to estimate its pose, in particular its slope. Since
the crosswalks lie on the ground, their slopes are expected to
be close to 0°. We can also obtain the vertical rotation with
the homography search approach. The results are tabulated in
Table 1.

The two-vanishing-points method is most simple, but re-
quires the vanishing point of the two side lines, and it is not
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Table 1. VR (vertical rotation) estimated from HS (homography
search) and slope estimated from HS, VL (vanishing line) with either
groups and 2 VPs (two vanishing points) methods for the crosswalk
images

Images VR:  Slope: Slope: Slope: Slope:

HS HS VL(1) VL(2) 2VPs
Fig 1(d) —48° —16° —4.72° —5.68° —4.81°
Fig 2(a) 54° —12° -=3.07° —2.69° —10.93°
Fig 2(b) 32° —13° —-0.36° —0.04° —8.97°
Fig2(c) —34° —10° —5.47° -0.76° —9.46°
Fig2(d) —41° —-13° —9.82° 3.90° —5.06°

applicable if part of the structure is occluded. Moreover, the
second vanishing point is obtained from just the two side lines,
and hence it is error-prone. Edges do not need to be partitioned.

The homography search approach can estimate the orien-
tation as well as the slope, whereas the other methods can only
find the slope. However, to estimate the slope, it makes use of
the edge endpoints, which are error-prone. It is not applicable
if part of the structure is occluded. This approach does not re-
quire partitioning the edges. Points can alternatively be used
to find the homography, but lines are employed for better ro-
bustness. Erroneous points in a point-based approach can lead
to larger errors than in a line-based approach, as each line is
fitted from multiple points.

The vanishing line method does not need the side lines or
the endpoints, therefore it works under occlusion. However, it
requires a group of equally spaced lines; therefore, it is feasible
only if the parallel structure itself is equally spaced, or if its
edges can be partitioned into groups of equally spaced lines.
As the crosswalk edges are partitioned into two groups, this
method gives an estimate for each group, as shown in Table 1.

For the homography search approach, reprojection error,
limited by image resolution, could introduce errors of up to 3
degrees in the estimation. The road surface, which is not ex-
actly flat, also contributes to the slope estimation errors. From
the results, we can see that the vanishing line method is more
accurate as it does not depend on the endpoints. Moreover,
in practice, the full extent of the structure may not be always
observed, therefore this method is preferable.

7 Error analysis

Only the homography search approach can estimate the ori-
entation, and the comparison of the three methods above indi-
cates that the vanishing line method estimates the slope better.
Therefore, we carry out error analysis for these estimation, as
reliability and quantitative measures are important.

7.1 Homography search

There are three stages in our search for vertical rotation: ho-
mography, line fitting, and then slope minimization. Firstly,
all the points undergo the homography H (6):

) |

i,J
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where ¢ = 1,...,m denotes each line with n; points and
7 =1,...,n; denotes the points on the line.

This is followed by an orthogonal least-squares fitting on
the points of each line 7. With the line equation being v =
su + [, where s is the slope and [ is the intercept, we have

. . 1 )
g O =1 ;s(e)lu(e)m
—u(0)); +1:)*. )

Finally, we minimize the sum of squares of the slopes of

all lines:
ing = 0)2.
min g Z; s(9);

We can combine the two minimizations in the second and
third stages above by setting s(6); in Eq. (18) to zero, and we
have

. _ - - / 2
minf =3 > (w0, ~ )%

i=1 j=1

where v(0); ; can be expanded using the homography in
Eq. (4) [18]. Taking partial derivatives with respect to 6 and
l; and setting to zero, we obtain the function ¢ which defines
0 and [;’s parameters (denoted by y) implicitly in terms of
input z, which consists of X, Y, Z, u; ;’s and v; ;s [8]. By
the implicit function theorem, we have

oro=- (5] [52]

and therefore the covariance matrix for y is
covy = Df(z)covDf(z)",

where cov,, is the covariance matrix for X, Y, Z, u; ;’s and
v;,;’s, which is a square matrix of dimension (342 " | n;).
Assuming the image points are independent and the variance
o2 is the same for each point in both v and v directions, it is a
diagonal matrix with 0%, 0% and 0% in the first three positions
of the diagonal and the rest being o2.

Figure 9 shows the relationship between the estimated ver-
tical rotation 6* (degrees) and its standard deviation oy« (de-
grees) for a synthetic image scene. It can be seen that the error
of the algorithm is higher when the vertical rotation is small.
Therefore, shape from texture is not effective for small slant,
which was also shown by Blake and Marinos [3].

7.2 Vanishing line

We only need 3 lines to determine a vanishing line, but usu-
ally more than 3 edges from each group are found. In order
to eliminate outliers, we apply RANSAC to select 3 lines at
random and compute the vanishing line l,,. We repeat and
select the triple with the most supporting edges to compute
the vanishing line.

The 3 lines selected each time may not necessarily be con-
secutive, so we need to extend Eq. (16) to deal with 3 arbitrary
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Fig. 9. Standard deviation of the vertical rotation estimation at dif-
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lines of known order. Given the lines I;, I; and I}, correspond-
ing to the ith, jth and kth edges found, and they being unequal,
we have

oo o<(§ —9)[(Li A L) - (I A L)L
+(k =) [l Aly) - (L ALk, (19)

and we can obtain equations to solve for yu like Eqs. (12) and
(13). Then we can check if a line I; supports the current triple,
by computing £ = I; Al + (I — i) uloo A1 If | E| is greater
than some threshold value, then line I; is considered as an
outlier.

As Eq. (19) simply contains some cross products and dot
products, we can use the standard error propagation formu-
lae [2] to obtain the variances for the coefficients of the van-
ishing line. Assuming the calibration matrix C' is accurate,
from Eq. (7), we can compute the variance for the compo-
nents of the normal. Rewriting Eq. (8) as

/NZ N2
6 = tan~! (X*Z) o

Ny

for a function y = g(x), to a first-order approximation [16],
the variance of y is given by o7 ~ [¢/(x)]?c7. Therefore, in
our case, we have

o ~ [cos® (tan"" z)]%07 + o7, (20)
where
_VYNR NG

Ny ’

o2 NZvar(Nx) + NZvar(Nz)
" N{(N% + NZ)
N (N% + N%)var(Ny)
N2 ’
v

and afY is the variance for the camera tilt, which can be mea-
sured using the inclinometer on the system or estimated from
the ground plane parameters [18].
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Table 2. VR (vertical rotation) estimated from HS (homography
search) and slope estimated from VL (vanishing line) with standard
deviation for the crosswalk images

Crosswalk Images VR with HS (s.d.)  Slope with VL (s.d.)
Fig 1d —48°(4.8°) —4.8°(2.7°)
Fig 2a 54°(8.7°) —2.9°(9.5°)
Fig 2b 32°(7.4°) —0.2°(2.2°)
Fig 2¢ —34°(8.9°%) —3.5°(3.9°)
Fig 2d —41°(21.0%) 3.4°(6.5°)

Table 3. VR (vertical rotation) estimated from HS (homography
search) and slope estimated from VL (vanishing line) with standard
deviation for the stair-case images

Stair-case Images VR with HS (s.d.)  Slope with VL (s.d.)
Fig 4a 38°(0.5°) 26.2°(3.2°)
Fig 4b 45°(0.3°%) 24.6°(3.9°)
Fig 4c 49°(0.3°) 29.9°(0.6°)
Fig 4d 48°(0.3°%) 25.2°(2.6°)

From Eq. (20), 04 decreases as x increases. Therefore, the
slope error decreases when the slope is less steep, i.e., when
there is more perspective effect among the lines.

Since we have two groups of edges, we obtain two esti-
mates of ¢ with their corresponding variances and then com-
pute a weighed least-squares estimate.

7.3 Results

The pose estimation results with their standard deviation for
the crosswalk and stair-case images are tabulated in Table 2
and Table 3 respectively.

The results show that all the crosswalk slopes estimated are
close to 0° and are significantly different from the stair-case
slopes; therefore, slope estimation allows us to distinguish
between them. In addition, the vertical rotation estimation fa-
cilitates navigation to approach them.

8 Conclusion

In this paper, we look into crosswalk and stair-case detection
by grouping lines and checking for concurrency using the van-
ishing point constraint. Intensity variation is used to partition
the edges afterward. As crosswalks and stair-cases are inher-
ently different 3D structures which have similar 2D properties,
pose information is required to distinguish them. Three tech-
niques are presented for pose estimation based on homography
search, vanishing line and two vanishing points. Detailed error
analysis indicates how reliable the estimation is, which is of
utmost importance for applications used by human.

The contributions of this paper include the novel algo-
rithms to estimate the vertical rotation from a set of parallel
lines using the homography search approach, and to estimate
the vanishing line from a set of equally spaced parallel lines.
These requirements are easier to fulfill than using two sets of
parallel lines [7,13], when part of the structure may be oc-
cluded.
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The experiments demonstrate that our detection and pose
estimation algorithms can identify crosswalks and stair-cases
successfully in real road scene images. The results show that
slope can be estimated well with the vanishing line method
and this allows differentiation between crosswalks and stair-
cases. Vertical rotation can be estimated with the homography
search approach and this facilitates navigation towards them.

The algorithms are by no means limited to mobility-aids
applications. These road features are important landmarks for
outdoor mobile robots, such as in map-building applications
or for navigation purposes. The pose estimation techniques
are also useful in other shape-from-texture applications.

These algorithms are working, though slow and far
from real-time. Future work includes optimization, fur-
ther trials with different scenes to evaluate their robustness
and performance, and trajectory planning to approach the
crosswalk/stair-case found.
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