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Abstract

Partial sightedness is a sensory disability which can to some extent be alleviated by artificial aids. Many of the sensory
methods used in robotics can be applied in attempts to recapture some of the sensory information a partially sighted person
has lost. This paper describes a device which uses sonar and stereo vision sensors for this task. The device is portable, and
is worn by the user, giving them freedom of movement over kerbs, stairs and rough ground. Sensor motion during walking is
measured using visual egomotion recovery and odometry, and has been modelled to allow compensation in the sensor readings.
A ground position estimate is continually updated by scene ground-plane fitting, or from the walk-motion model, and is used
to classify scene features as obstacles or parts of the ground. Methods for the robust reconstruction of image points and lines
into scene features are developed. The recognition of world objects of exceptional significance to a mobile person – kerbs
and stairs – is given particular attention. A user interface, which has undergone limited real world testing, is also described.
Experimental results are presented for the various parts of the system. © 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

Despite the potentially great benefit, many of the
40 million visually impaired people worldwide use no
form of mobility aid in their everyday lives. The non-
human aids that are most commonly adopted are the
long cane (by about 50% in the UK) and guide dog
(by about 4% in the UK). These have had limited ac-
ceptance, essentially because the long cane has a very
limited range, and guide dogs are very expensive and
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difficult for a blind person to look after. In addition,
neither the long cane, nor the guide dog give warn-
ing of obstacles at head height such as overhanging
branches.

The most popular electronic mobility aids used to-
day are those based on conversion of sonar information
to an audible signal for the user to interpret [6,18,19].
These are not, however, commonly used as they re-
quire extensive training or provide limited informa-
tion. An alternative approach is the mapping of images
onto tactile arrays fixed to the skin [2], though this has
proved problematic. Research groups are also looking
at the possibility of connecting cameras straight into
the human nervous system [3]. Our approach attempts
to interpret the visual information and convert it to
a higher level representation before sending it to the
user.
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Fig. 1. The project prototype backpack

1.1. System design

It is important that the user should be free to walk
naturally, rather than being pulled or abruptly stopped
by an aid. This is achieved by having the user carry
the device. They are also given a greater degree of
freedom of movement, being able to negotiate stairs
and hills, in principal even to run. Body mounting also
gives the device the potential to be small and discrete.

The current project prototype is shown in Fig. 1. The
system is based around a backpack which houses the
system electronics. Three sonar sensors are mounted
on the user’s belt and one on the chest. These are
driven and interpreted by a Motorola HC11 micro-
controller. Rigid arms extend from the backpack over
each shoulder, and onto each of these is mounted a
calibrated greyscale camera. Camera orientation is ad-
justable to allow the cameras to be aligned. The cam-
eras are interfaced to an image capture and processing

board based on the TI C40 processor. Images can be
captured in stereo-pairs (an image captured from the
right and left cameras at the same time). Feedback to
the user is through vibrating motors attached around
the users belt.

The combination of sonar and vision was chosen
because of the complementary nature of the sensors.
Sonar measures range accurately but not direction,
whereas stereo vision measures direction more accu-
rately than range. Both devices will fail under certain
circumstances but are unlikely to fail together: sonar
is confused by reflections from the ground and multi-
ple reflections, while vision shows unpredictable be-
haviour when mirrors and windows are viewed.

The project aim is for a device capable of detecting
obstacles at least 10 cm high, at a range of up to 5 m.

1.2. Paper overview

The remainder of this paper describes ongoing work
into the computer vision and sonar components of the
system. More discussion is given to the vision issues
as this is thought to be the more profitable research
area.

A model of the movement experienced by sensors
mounted on a walking person is developed in Sec-
tion 2. Determination of ground position from image
lines is then achieved in Section 3. The line features
used can be classified as obstacle or ground features
as a result of this. Section 4 then deals with the recon-
struction and tracking of points in the world.

Detection of negotiable hazards, such as stairs and
kerbs is discussed in Section 5. The detection of door-
ways and traversable paths has been studied in related
work on this project [23]. The user interface was tested
on a guide dog training course in conjunction with the
sonar sensor part of the system. This is described in
Section 6. The final part of the paper, Section 7, is a
summary and discussion of the likely future direction
of the work.

2. Walker egomotion measurement

For a proper understanding of the system as de-
scribed, a model of the effect of mounting sensors
onto a walking person was first developed. This is
useful in two ways: firstly to provide more accurate
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measurement of recent motion from uncertain mo-
tion measurements; and secondly as a predictor of the
likely next movement.

A knowledge of recent motion is beneficial because
it allows an estimate of the position of the ground to
be made from previous ground observations, at times
when the ground cannot be observed. Knowledge of
the motion also facilitates its removal from the motion
of independently moving objects in the world to reveal
their underlying motion, which can then be more easily
tracked. Movement prediction provides estimates of
feature image location, which allows image features
to be more easily matched through time.

2.1. Motion measurement

Motion of the project sensors can be measured us-
ing the sensors themselves, or independent odome-
try. The measurement of motion visually is discussed
in Section 4, and in more detail in [15]. The current
section describes the result of attempts to track rota-
tional motion measured using a digital compass and
inclinometer.

The gait of a walking person was first analysed in
an orthopedic gait lab [8]. This demonstrated that the
six components of motion are sinusoidal in nature.
Measurements from the rotation sensors used (roll,
pitch, and yaw), after filtering with a Butterworth filter,
confirm this. These motion signals are analysed and
tracked in real time using a combination of parameter
extraction using wavelets, and an extended Kalman
filter. This is discussed further in [14].

2.2. Motion modelling

The instantaneous parameters of a sinusoid approx-
imation to each motion component are first extracted
by convolution with Gabor wavelets. Convolution of
the latest part of a signal with odd and even wavelets
over a suitable range of frequencies gives a complex
response for each frequency. The response of great-
est magnitude defines the signal frequency, the corre-
sponding phase of the response gives the signal phase,
and signal amplitude can be calculated from the mag-
nitude of the response.

This method of parameter extraction is reliable and
accurate [7], however, because the wavelets are double
sided, the parameters extracted characterise the signal

Fig. 2. A roll signal, and predictions of it made 0.25 s in advance.

ψ/2 from the latest reading – whereψ is the width of
the wavelet used. Asψ must be of a certain size, the
parameter estimates are never quite current.

For this reason, analysis continues with an iterated,
extended Kalman Filter [1] initialised on the wavelet
parameter estimates, and running from timeψ/2 to
the last available reading. Each component of rotation
is approximated by a single sine wave, described by

Ci = Ai cos(θi)+Di. (1)

It is assumed that frequency (fi), offset (Di), and
amplitude (Ai) of each component are nominally
fixed (allowed to vary slowly in the Kalman filter).
Phase angle (θi) is updated at each step fromfi .
Because the three frequency components are linked
(fpitch = 2froll = 2fyaw) the number of filter param-
eters can be reduced from 12 to 10. The additional
provision of a linear variation in offset for the yaw
signal must also be given, to properly model smooth
corner turning.

An example of prediction error for a roll measure-
ment using this method is shown in Fig. 2. The exam-
ple is particularly testing because it contains sudden
variation in walking speed. The results for a Kalman
filter, or wavelet analysis alone are shown for com-
parison. These are seen to perform slightly worse than
the combined method.

State detectors are also used, for example to start
the tracking process when walking is thought to have
started.
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3. Obstacle detection using edges

3.1. Ground plane obstacle detection

Ground plane obstacle detection(GPOD) using
stereo disparity was first reported by Sandini [4]
and subsequently refined by Mayhew [11] and by
Li [9,10]. GPOD uses a pair of cameras to detect
features which do not lie on the ground plane.

GPOD parameterises the ground plane using mea-
surements of disparity, rather than the depths of world
features. This improves robustness to calibration er-
rors. It is a feature-based stereo algorithm. Images of
the ground that contain line features but no obstacles
are used to initialise the ground plane estimate.

GPOD works in image coordinates, and compares
the disparity values in a new image pair with the ex-
pected ground plane disparity to detect differences.
The measured disparity of an obstacle will be signif-
icantly larger than that which has been predicted for
the ground. Vertical edges are detected using a So-
bel detector, and stereo matching uses the PMF al-
gorithm [16,17]. Special cases of the Sobel and PMF
algorithms decrease the cycle time [9].

The ground plane disparityd varies linearly with
cyclopean image plane position [10], i.e.

d = au+ bv + c, (2)

where(u, v) is the cyclopean image coordinate. In ini-
tialisation, a least-squares fit is used to estimate the
ground plane parameters(a, b, c). The algorithm has
been extended to sub-pixel accuracy by parabolic in-
terpolation during Sobel edge detection and a better
fit with lower residue is obtained.

3.2. Dynamic ground plane recalibration

For wheeled mobile robots moving over flat ground,
there is no change in position of the ground plane
relative to the cameras, and the cyclopean ground-
plane disparity function is therefore fixed. However,
when mounted on a person, the sensor movements
make it impossible to use a one-time, fixed ground
plane calibration in this application.

When many ground features can be seen, we use
ground-plane fitting based on RANSAC [5] to esti-
mate the ground-plane parameters. RANSAC takes all
the image features (provided that there are sufficient

ground plane features, and not all obstacle features lie
on the same plane), fits the ground plane features and
discards the obstacle features as outliers.

For RANSAC, the probability of a good sample (all
inliers) [24] is given by

Υ = 1 − (1 − (1 − ε)p)m, (3)

whereε is the contamination fraction,p the size of the
sample andm is the number of samples. The size of
the sample in this case is 3, as we need three points to
define a plane, and we assume that the percentage of
contamination for a typical scene is 75%. If we wish
to achieve a 99% probability of a good sample, the
number of samples required is around 300.

The algorithm fordynamic ground plane recalibra-
tion (DGPR) is as follows [15,20].

Iteratively at each step, we recalibrate the ground
plane as discussed above to determine the ground
plane parameters for obstacle detection. Features
found are partitioned into two types: ground plane
features and obstacle features.

Track initiation, maintenance and termination is
performed for all the features found. Obstacle feature
information is then used to send alarms to the user
about nearby frontal obstacles.

When there are not sufficient ground features to re-
calibrate the ground plane, we use the previous step’s
ground plane parameters and the camera motion es-
timate (from Section 2) to predict the ground plane
parameters of the current frame. Since the motion esti-
mate is difficult to obtain accurately over long periods
[12], when there are enough features, recalibration
with RANSAC will refit the ground plane to avoid
accumulation of camera motion estimation errors.

3.3. Experimental results

We have carried out numerous experiments to de-
termine the utility of dynamic recalibration. In the re-
sults presented here, a sequence of stereo images of a
real outdoor scene was captured at 128× 128 resolu-
tion. The environment is a tiled pavement with various
obstacles. There was some camera motion between
the images with translations up to 20 cm and rotations
up to 5◦, which cover the extreme case for human
movement [8].

The same sequence of images was used to test
both the DGPR algorithm and the RANSAC–DGPR.
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Table 1
Comparison between GPOD and DGPR results

Step number 1 2 3 4

Total no. of obstacles in region 6 6 6 8
No. of obstacles detected by GPOD 4 0 0 0
No. of obstacles detected by DGPR 4 4 4 5

Obstacle objects are found from matching the ob-
stacle edges using a heuristic edge matching tech-
nique [22]. A comparison between GPOD and DGPR
in terms of the number of obstacles detected in the
first four images is shown in Table 1. In these tests, the
between-image movements were measured approxi-
mately by hand. From the second image onwards, the
basic GPOD algorithm fails to detect any obstacles,
but the DGPR algorithm is unaffected by the move-
ments. The program does not run in real time on the
C40 processor but will run at 2 Hz on a Pentium 166,
and at 4 Hz on a state of the art 300 Hz machine.

4. Point reconstruction and tracking

The robust reconstruction of points as well as lines
is considered because they occur more frequently than
do lines, particularly in nature (for example, in a bush).
The most important aim of the reconstruction is that
grossly erroneous points must not be allowed to enter
it. It is also desirable to have as many points as pos-
sible in the reconstruction. The method described in
this section concentrates especially on the first of these
aims. Any camera motion between frames is permit-
ted, the motion need not be smooth, so long as there
is an overlap in that seen in consecutive images. Any
type of scene structure, and depth range, is permitted,
as a full projective model of the scene is used. The
method assumes scene rigidity, but can be extended to
allow independently moving near-rigid objects.

4.1. Robust point structure and motion from stereo

Between the capture of successive image pairs four
stages are performed. Stage A matches between points
in a stereo-pair of images, stage B matches between
one of these images and the corresponding image in
the following stereo-pair (the latest available pair).

Fig. 3. Point matching between four image pairs.

Stage C estimates camera motion between the two
stereo-pairs using the matches made so far. Stage D
then verifies and corrects the matches made against the
camera motion estimate and provides matches to the
remaining image in the latest stereo-pair. For a more
accurate motion estimation result iteration should be
performed between stages C and D. The order after
receiving a new image pair is actually BCDA.

Fig. 3 illustrates the processes occurring during this
cycle, and is referred to in the text. The effect on the
number of points reconstructed correctly and incor-
rectly at the end of stage D, of varying one of the
process parameters, while the others are held fixed, is
shown in Fig. 4.

4.1.1. Stage A: Stereo matching of unmatched points
For the latest stereo-pair of images, stereo matching

(matching of points from one image to the other in the
stereo-pair) ofnewpoints (those not matched by stage
D at the previous iteration) is first performed. Features
are matched by comparison of image intensity values
in a small area around each corner. The comparison is
invariant to intensity and contrast differences between
the areas, and limited topological differences are al-
lowed [13].
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Fig. 4. The dependency of reconstruction accuracy and size on
system parameters.

The strongest few matches to a left image point
in the right image (a maximum of four matches) are
recorded. Referring to Fig. 3, the last time this was
done (at timet − 1), r was matched toi, ii, and
iii, and s to j and jj . The most important benefit
in allowing the stereo match to have multiplicity is
thatall plausible matches to a point are retained until
the true match can be reliably recognised. Ordinarily,
the number of new points processed this way (a one-
dimensional search) will be a small fraction of the to-
tal, most being matched by the more efficient verifi-
cation method of stage D (a small area search).

4.1.2. Stage B: Temporal image matching
In this stage points are matched between consecu-

tive left (or right) images, based again on image match
correlation. A search is made for the match within an
area of the point’s previous position, or if a move-
ment (gait) model such as that described in Section 2
is available, it is used to guide a more efficient search
(compactness of the search area required, hence effi-
ciency, is a function of the motion model accuracy).
The matches made will be imperfect but provided cam-
era motion between the two images is found to be suf-
ficiently confident at the next stage (if the motion of
a good number of points concur with it), the matches
made now can be later ignored. In Fig. 3, matching
is carried out between left images,r is matched tor ′,
ands to s′. Additional robustness would be achieved

if this stage were repeated between consecutive right
images and the results combined.

4.1.3. Stage C: Initial estimate of motion
Matches established in the previous two stages,

though crude in stage B, should contain enough in-
formation to allow robust estimation of the motion
between the two stereo-pairs. This is achieved by
random sampling of sets of three points (taking a
random match where multiple stereo matches exist),
calculation of the motion implied by the matches
for this set, and a choice of motion which is con-
sistent with the greatest number of the remaining
point matches (a RANSAC method). This method,
described further in [13,14], was found to be more
robust than a method based on the fundamental ma-
trix, which is degenerate under certain motions [24].
Any combination of rotation and translation, or no
motion at all, is permitted. An example of a random
three point set might be the pointr (with matches
r − i and r − r ′), the points (with matchess − jj

and s − s′), and a third point, with one of its stereo
matches randomly selected. The use ofmultiple hy-
pothesised stereo matches is better than the use of a
single best match because more correct matches will
be available to provide support. It is however nec-
essary to adjust the number of samples taken within
RANSAC to allow for the extra outliers. Eq. (3) is
modified to give

Number of samples required= log(1 − Υ )

log(1 − (σ1/M)
3)
,

(4)

whereΥ is the probability that a sample containing
only inliers is chosen,M is the mean match hy-
pothesis multiplicity at stage A (stereo matching),
and σ1 is an estimate of the proportion of inliers in
the dataset (points matched correctly in stereo and
through time) if each point were allowed only one
stereo match. In practice this will be anoveresti-
mate of the number of samples required, which is
satisfactory.

If a significant portion of the resulting matches are
inliers (a figure of 20% is used) a correct motion hy-
pothesis is assumed, otherwise stages B and C are
repeated with a wider search area until a sufficiently
supported motion is found.
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4.1.4. Stage D: Verify and update matches
In this section an attempt is made to match points

over the four images shown in Fig. 3: the previous
stereo-pair (numbered 1 and 2), and the latest pair
(numbered 3 and 4). In stage A an attempt has been
made to define stereo matches between points in im-
ages 1 and 2, in many cases resulting in multiple
matches for each point. In this stage we wish to as-
certain which of these matches are reliable using the
information content of the new image pair and the es-
timate of camera motion between the pairs.

Considering each hypothesised match in turn, a
point position in image 1, a match disparity, and
a match correlationα12 are known. From the po-
sition and disparity the point’s location in space at
the earlier time step can be determined, the motion
estimate used to transform this location to the latest
time step, and the new location projected to give pre-
dicted position in images 3 and 4. The point should
appear close to these positions if the stereo match
hypothesis is correct. A confined search for the point
is conducted very near to the positions and the best
correlation found to image 3 (α13) and image 4 (α14)
is recorded.

A quantity,Ψ , is derived to rate the hypothesis based
on the similarity of the matched image points and their
accordance with the rigid motion. The rating is de-
fined by the match correlationsα12, α13, andα14, and
deviations from the implied motion:

Match strength, Ψ = α12 α13 α14

dL + dR + εd
(5)

The valuesdL anddR are the distances between the
predicted and matched point positions (the devia-
tions) in images 3 and 4 respectively. The constant
εd , prediction error influence, balances the impor-
tance placed on visual similarity over rigidity in the
reconstruction.

For a point to become verified its match strengthΨ
must lie above amatch strength threshold. Many of
the multiple hypotheses for a point will be eliminated
by this threshold but for some points more than one
verified match may still exist. Two tests are performed
in an attempt to isolate a single match for these. The
first, a supremacy test accepts a hypothesis if its match
strength is larger than any other by at least a factorts ,
thesupremacy threshold(set to 5). The second test is
concerned with stereo match hypotheses made which

are very close together (image 2 positions within a
proximity threshold). Sometimes when trying to match
two features using image patches, because of pixela-
tion and viewpoint induced deformation there may be
more than one place around the true feature match po-
sition for which the correlations (and henceΨ ) are
close to the maximum. Inaccuracy in camera calibra-
tion means that the true hypothesis cannot reliably be
identified, so the hypothesis with the highest value of
Ψ is (arbitrarily) taken since the error in choosing this
over the others will be relatively small. The proximity
threshold test allows extra points to be reconstructed
but at the cost of a loss in the accuracy of their recon-
structed position.

After performing both tests, if a single verified hy-
pothesis remains for a point, the stereo match in im-
ages 3 and 4 is recorded for use in the next cycle
(eliminating the need for a search at stage A).

A disparity gradient [17] check is then applied to the
verifiedstereo matches. The disparity gradient thresh-
old is set to 0.5 and applied in both image directions,
which results in essentially a general rejector of sur-
faces whose tangent approaches parallinity with the
camera optical axes. If the image 3 to image 4 match
for a point has more local point matches rejecting it
under the disparity gradient test than supporting it, the
point’s reconstruction is rejected. This test will not af-
fect isolated points, for which rejection and support
are zero. If, in addition, it is insisted that a hypothesis
hassomesupport, isolated points will also be rejected.
The effect of the disparity gradient test is shown in
Fig. 4, for the case where some support is, and is not
insisted upon.

In Fig. 3, the match betweenr and ii has been
confirmed at the expense of the other hypothesised
matches,r − i andr − iii. The matchr − r ′ has also
been confirmed, while the matchs − s′ is found to be
inconsistent, ands is matched tos′′ instead.

4.2. Structure filtering

The method described in the previous section
produces reliable point stereo matches which can
be triangulated to estimate the position of points at
consecutive time instants. For added robustness and
accuracy in the estimate of this point structure it is
tracked and filtered through time.
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Fig. 5. Images of a laboratory.

4.2.1. A stationary reference coordinate frame
The output of stereo triangulation is positioned rel-

ative to the cameras. To allow meaningful position
measurement through time a fixed world coordinate
frame must be used and point position tracked within
this. The conversion of point position from a camera
to a world coordinate frame is a function of the posi-
tion and orientation of the camera in the world frame.
This is defined at iterationi by a rotation of the cam-
era,Ri , followed by a translation,ti , relative to the
new orientation. This can be updated from therela-
tive movement of the camera between statei − 1 and
statei, defined by a rotationR and translationt , by
the equations:

Ri = RRi−1, ti = R−1ti−1 + t. (6)

Point positions, and their uncertainty ellipsoids, can
then be transferred from the camera frame (Pc, Uc) to
the world frame (Pw, Uw) by

Pw = Ri(Pc + ti ), Uw = RiUc. (7)

4.2.2. Structure filtering
A Kalman filter is used to estimate point structure

position in the stationary world coordinate frame. A

validation gate is used to remove points for which
the reconstruction is unrepeatable. A different filter
is used to track theX, Y , andZ coordinate of each
point in the world coordinate frame. Each filter is a
one-dimensional Kalman filter with direct measure-
ment of the state. Position uncertainty is a function of
reconstructed point position and image position un-
certainty [13].

A scene reconstruction was made from a set of 50
image pairs, with large motion jumps in between them
(up to 200 pixels). Two examples of left images from
the sequence are shown in Fig. 5. The reconstruction
is shown as a plan view in Fig. 6 – each grey blob
is an output point from the program. Image position
relates to worldX andZ position (each square rep-
resents 1m), and the shade indicates height above the
ground, lighter being higher. The observer’s start posi-
tion, on which the world coordinate system is defined,
is at the bottom of Fig. 6, facing up. The actual lay-
out of the room, and approximate viewing direction
for the images of Fig. 5, are superimposed. Points re-
constructed to a position which is at least 10 cm away
from any other point are omitted. The reconstruction
seems fairly reliable, no obstacles are missed, and
no false structure blocks movement into unobstructed
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Fig. 6. Point reconstruction of a laboratory.

parts of the room. False structure is generated behind
the mirror, an inherent problem while using computer
vision. The images used are of size 512× 512 pix-
els. As the C40 processor is too slow to process in
real time, the images are processed off-line. It is ex-
pected that performance close to real time could be
achieved with optimised code, smaller images, and a
faster processor.

4.3. Obstacle detection

Given a reliable reconstruction and a measurement
of ground plane position, either from the result of
Section 3, or from a similar method applied to the
point reconstruction described in this section, it is pos-
sible to identify discontinuities in the ground plane
and to categorise structure as being either obstructive
or harmless (lying on the ground).

5. Stair-case detection

Following the kerb detection approach [21], we
start with Canny edge detection and Hough transform
line-fitting on the image. For image point(u, v), the
quantised Hough space is(r, θ), whereθ is the angle

rotated andr is the distance from the origin of the
x–y coordinate system. We have

r = x cosθ + y sinθ,

wherex = u−W/2 andy = W/2−v, in whichW is
the dimension of the image. We accumulate evidence
for straight lines from the detected edge points and
then extract a small number of(ri, θi)s which receive
most support.

Stair-case edges are parallel to each other in 3D
space. Therefore, when they are projected onto the
image, these edges will intersect at a vanishing point
(provided that they are not frontal parallel to the image
plane). Usually a stair-case is seen from a distance,
the lines will be quite parallel to each other, and the
vanishing point will be far away from the image.

Based on this projective property of objects con-
taining parallel lines, we apply our algorithm outlined
below on those Hough transform fitted lines to detect
and locate stair-cases in images.

5.1. The detection algorithm

The algorithm firstly picks out groups of near paral-
lel lines, and then checks for concurrency (hence find-
ing the vanishing point) as hypotheses for a stair-case.
Then it seeks further support from the other lines for
these hypotheses, to determine the best hypothesis.

Moreover, since stair-case edges are usually long
and close together, the algorithm discards short edges
and edges far away from the rest which are likely to
be due to features other than the stair-case.

The algorithm is as follows:
1. Findk lines with maximum support from the Canny

detector followed by Hough transform line fitting,
discarding vertical and near vertical lines.

2. Find all groups ofn lines which are within∆ de-
grees with each other among thosek lines.

3. Check the groups for concurrency (vanishing point
constraint), discarding those which do not inter-
sect well (see below) unless the lines are horizon-
tal whose vanishing point is at infinity, discarding
also those whose intersection is within the image. If
none remains, there is no hypothesis for any stair-
case.

4. For each resulting group, check for more support
from the otherk − n lines. Check how close each
actual detected line is to a predicted line joining
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the vanishing point found and the midpoint of the
real line. Augment each group with additional sup-
porting lines.

5. Select the group with the maximum number of sup-
porting lines as the hypothesis for a stair-case.

6. For this group of lines, select the actual line seg-
ments which are at least of lengthlmin, allowing
the skipping of a couple of pixels. This caters for
broken edges, but excludes short edges that could
have arisen from something else. Discard line seg-
ments which are far away from the rest.

7. Output the remaining line segments as the expected
stair-case hypothesis.

5.1.1. Intersection of multiple lines
We need to determine how well a number of straight

lines intersect to decide whether they are considered
to be concurrent or not. Theoretically, we can solve
for those equations simultaneously to find the vanish-
ing point; however, due to noise, the solution cannot
be obtained forn simultaneous equations with two
unknowns (n > 2), as those lines will not intersect
perfectly with each other.

A least-squares procedure is employed to find the
image point which is closest to those lines. After-
wards, the residual is computed, if it is less than a
certain small threshold, then we consider these lines
to be concurrent and that the image point is the
vanishing point, else they are eliminated from the
hypotheses.

In general, we would like to find the vanishing point
p by

min
p
C =

n∑
i=1

(l>i p)2,

where

p = [px, py,1], li = [lix, liy, liz]

Taking partial derivatives and setting them to zero, we
have

∂C

∂px
=

n∑
i=1

lix(lixpx + liypy + liz) = 0,

∂C

∂py
=

n∑
i=1

liy(lixpx + liypy + liz) = 0

H⇒
[
Sxx Sxy
Sxy Syy

] [
px
py

]
= −

[
Sxz
Syz

]
,

where

Sxx =
n∑
i=1

l2ix, Sxy =
n∑
i=1

lix liy, Syy =
n∑
i=1

l2iy,

Sxz =
n∑
i=1

lix liz, Syz =
n∑
i=1

liy liz.

After solving this simultaneous system of two equa-
tions with two unknowns, we obtain(p∗

x, p
∗
y), and

substitute back intoC to compute the residue,

C =
n∑
i=1

(lixp
∗
x + liyp

∗
y + liz)

2,

which decides whether these lines should be regarded
as concurrent or not.

In our case, the straight lines are obtained from the
Hough transform and are expressed in terms ofri and
θi , i.e.

lix = cosθi, liy = sinθi, liz = −ri .

5.1.2. RANSAC
Instead of finding the intersection point for groups

of lines by least-squares, RANSAC can be employed.
Two lines are selected from the lines, and the inter-
section point is found. Cases where the intersection is
within the image are discarded. Support is then sought
from the other lines which contain this intersection
point. Repeating this procedure, the group of lines with
maximum support is selected as the hypothesis for a
stair-case.

Using Eq. (3), to achieve a 99% probability of a
good sample in our case, assuming the percentage of
contamination is 75%, the number of samples is 72.

5.1.3. Detection results
Here, we select the best 20 Hough transform lines

(k = 20).∆ is set to 20◦ andlmin is set to 25% of the
number of pixels on the actual line.

Fig. 7 shows the image for an indoor stair-case and
the stair-case found. Fig. 8 shows the image for an
outdoor stair-case and the stair-case found.
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Fig. 7. An indoor stair-case, (a) the image (256× 220 resolution); (b) the stair-case detection result with edges highlighted.

Fig. 8. An outdoor stair-case: (a) the image (320× 240 resolution); (b) the stair-case detection result with edges highlighted.

5.2. Partition stair-case edges

So far, using the vanishing point constraint, we ob-
tain a hypothesis for some structure containing parallel
lines. We would like to add some further constraint to
verify that the structure consists of two sets of equally-
spaced parallel lines, the convex and the concave step
edges. This is now a much stronger constraint for a

regular stair-case compared to merely searching for
structures with parallel lines.

The lines detected include both convex and concave
edges, and so they need to be partitioned and then
tested for equal spacing. The number of lines to be
detected is important, using too small a number, some
edges may be missing, using too big a number, many
lines found will be referring to the same real edge.
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Fig. 9. Intensity variation across a stair-case. (a) A line drawn across the stair-case steps. (b) The intensity profile across the stair-case
edges along this line.

5.2.1. Interleaving
Order of contact is a projective invariant we employ.

For the two sets of edges (concave and convex), they
interleave each other in 3D, and we can determine the
order of contact when a line is drawn across them.

When this is projected onto 2D, since the order of
contact with the line is the same, the two sets of lines
still interleave each other in the image.

To do the partition, we look at the detected lines
l10, l20 and l30 when the number of lines used is 10,
20 and 30, respectively. Usingl20 andl30 can help to
fill in the missing edges inl10. Using l10 and l20 can
help to discard the extra edges inl30. Combining the
information from the three sets of lines, we obtain a
list of lines corresponding to all the edges of the stair-
case. Then, alternate lines are selected for the concave
and the convex sets.

5.2.2. Cross-ratios
A cross-ratio is defined on four lines which are in-

cident at a single point. Any set of lines incident at a
common point is called a pencil. The cross-ratio of the
pencil can be defined in terms of the angle between
the lines. Or, for any line which cuts across the pen-
cil, the four points of intersection define a cross-ratio
on the line.

For regular stair-cases in 3D, the convex edges
are equally spaced, so are the concave edges. Since
cross-ratio is a projective invariant, after projection,

the cross-ratio for four points on a line, each of which
lies on a convex edge is 1.33, so is the cross-ratio for
four points each lying on a concave edge.

After the partition, cross-ratios are then computed
for each individual set. If they lie in a range around
1.33, then the hypothesised object contains two sets of
equally spaced lines which are alternate to each other.

5.2.3. Line projectivity
We note that when a line is drawn across the edges

of a stair-case in an image, it gives various points
which correspond to points on a 3D line. Consider
this line-to-line homography which is a 2× 2 matrix,
the d.o.f. is 3 since it is up to a scale, therefore, three
points are required to find this mapping.[
v′
1

]
= H

[
v

1

]
=

[
a b

c 1

] [
v

1

]
⇒ v′ = av + b

cv + 1
,

wherev′ is thev-coordinate along the line across the
edges, obtained from the image andv is the 3D coor-
dinate of the stair-case edge. So we select three points
from the image, and we can use some consecutive in-
teger values forv to map to each image point, e.g. 10,
11, 12.

Using these three correspondences, we can deter-
mine (a, b, c) and use them to estimate thev′s for
different values ofv, e.g. 8,9,10,11,12,13,14, . . .
We can then check the image points obtained to seek
support.
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Fig. 10. Intensity variation after thresholding. (a) The line drawn across the binary image of the stair-case. (b) The intensity profile
across the stair-case edges along this line.

We repeat the above either exhaustively or using
RANSAC, i.e. randomly selecting three points, and
select the ones with good support (> 4), since every se-
lection will have at least three supporters. Each selec-
tion may potentially correspond to a group of equally
spaced edges (convex or concave).

For a simple stair-case, if there are no false edges,
i.e. if all the edgesP are either concave or convex
edges, we aim at finding partitionsP1 andP2 such that

P1 ∩ P2 = ∅, P1 ∪ P2 = P.

Even for cases with false edges, we have instead

P1 ∪ P2 ⊂ P.

Therefore, for typical stair-cases convex and concave
edges are the main edges, plus perhaps a few spurious
ones due to some pattern on the step for example.
Among the good selections found, we need to choose
two of them which do not overlap with each other and
their union has a maximum size among all the other
choices.

If the two selections cannot be found or the union
size is far too low, that means the edges found cannot
be partitioned into two sets of equally spaced lines or
too many edges are missing.

Using the order of contact constraint, we can elim-
inate the case when there are two consecutive edges
from the original set inP1 or P2. But we can relax the

constraint a bit to allow occasional missing of edges,
e.g. only eliminate sets with three consecutive edges
from the original set.

5.2.4. Intensity variation
Looking at a typical stair-case image in Fig. 8(a),

instead of using geometric constraints discussed above
to partition the stair-case edges, we now consider the
intensity variation of the stair-case as cues to do the
partition.

The main idea is to detect concave and convex edges
when there is a change of intensity from dark to light
or from light to dark. Drawing an arbitrary line across
the stair-case edges as shown in Fig. 9(a), the image
intensity profile along this line will look something
like Fig. 9(b).

It is clear from the profile that there exists a pattern
of ups and downs of the intensity, corresponding to
the tread and riser of the stair-case steps. In order to
facilitate the extraction of the positions of the concave
and convex edges, we use the average intensity across
that line to threshold the image to obtain a binary
image as shown in Fig. 10(a). The image intensity
profile now will look like Fig. 10(b).

Profiling from the top towards the bottom, the con-
cave edge occurs when the intensity changes from
dark to light. On the other hand, the convex edge oc-
curs when the intensity changes from light to dark.
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Fig. 11. Image sequence overlaid with the concave and convex edges found on the stair-case. Convex edges are marked in white
while concave ones are marked in black.

Therefore, from Fig. 10(b), we can easily obtain the
positions of the concave and convex edges, respec-
tively. Geometric constraints such as cross-ratios can
be applied to refine the sets as well.

5.2.5. Partition results
Verifying with cross-ratios, simply using alternate

lines, is not very stable since it is very dependent on
whether the number of detection lines is appropriate
for a particular situation or not. Moreover, a missing
edge or a spurious one will cause the following edges
to be selected into the wrong group.

The line projectivity approach is better as it al-
lows false edges, but it requires at least three con-
secutive convex edges and three consecutive concave
edges to be found to compute the homography. By in-
creasing the number of detection lines to avoid miss-
ing edges, we will have multiple hypotheses when
there are many spurious edges. It still indicates that
the structure detected contain two equally spaced sets,
but based on the geometric information of the cur-
rent frame alone, we cannot yet partition the edges
reliably.

Here, we show in Fig. 11 a sequence of images cap-
tured while a user walks towards a stair-case. Edges
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Fig. 12. Testing the user interface with the sonar sensors.

are detected using Canny edge detector and lines fit-
ted with Hough transform. Stair-case edges are then
identified with the vanishing point constraint. After-
wards, they are partitioned using the intensity varia-
tion approach described above. Concave and convex
edges are overlaid on the images in Fig. 11 with con-
vex edges marked in white and concave ones marked
in black. The partition obtained using intensity varia-
tion is more stable, with edges correctly classified.

6. Testing the user interface

The user interface of the device was tested in
collaboration with Irish Guide Dogs for the Blind. A
number of visually impaired visitors to their training
centre in Cork used a sonar-only version of the device
to guide them through an ‘obstacle course’ similar
to those used to train guide dogs and their owners.
The course was about 50 m long and included a va-
riety of obstacles that could be encountered on a city
street, such as signs, barriers, fences, a bicycle, and
a dustbin. Fig. 12 shows a test subject negotiating the
course.

Three sonar sensors were mounted on the user’s
belt, one aiming directly in front of the user, and the
others pointing at about 15◦ to each side. This con-
figuration was found to provide adequate coverage of
the ‘danger area’ in front of the user, and to prevent
obstacles falling between the beams of neighbouring
sensors. A small vibrating motor was mounted close to

each sensor. Each motor was activated when the cor-
responding sensor detected an obstacle at a range less
than a threshold selected by the user. A fourth sensor
and motor were mounted at chest height.

The user interface was well received and most users
found that, after a few minutes training, they were able
to complete the course without collision. The use of
the ‘buzzers’ was felt to be an intuitive way to warn
the user about obstacles. The most significant training
requirement was to encourage the users to rotate their
bodies to scan from side to side to find a clear path,
instead of stepping sideways into unknown territory.

7. Conclusions and future work

The system described in this paper demonstrates a
theoretical solution to many of the problems faced by
a partially sighted person trying to move around in an
unknown environment.

Walk-induced motions have been successfully
tracked and modelled. Reconstruction of image lines
and points into entities in the world has been shown to
work robustly and with sufficient accuracy. Reliable
localisation of the ground plane – the only scene
object which need not be avoided, and of kerbs and
stair-cases – which may be negotiated with care, has
also proved to be possible. The simple user interface
developed has proven acceptable to users in short
term evaluation tests.

Some of the vision-based parts of the system have
been shown to work properly in real time, the real-time
functionality of others could not be shown because of
limited processing resources. More processing power
would allow the real-time functionality of these parts
to be demonstrated and allow the different visual parts
to be linked and working together. Sensor fusion with
sonar could also be realised at this point to bring con-
siderable further benefits such as an increase in general
system robustness, better localisation accuracy when
both sensors detect an obstacle, and reliability under
circumstances when one sensor alone misperforms.
Further work on reliable staircase detection from im-
age sequences is also planned.

The ideas presented are applicable in other areas,
e.g. the guidance of a humanoid robot.
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