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ABSTRACT

A key component in the emerging localization and mapping paradigm is an appearance-based place recognition
algorithm that detects when a place has been revisited. This algorithm can run in the background at a low
frame rate and be used to signal a global geometric mapping algorithm when a loop is detected. An optimization
technique can then be used to correct the map by ‘closing the loop’. This allows an autonomous unmanned ground
vehicle to improve localization and map accuracy and successfully navigate large environments. Image-based
place recognition techniques lack robustness to sensor orientation and varying lighting conditions. Additionally,
the quality of range estimates from monocular or stereo imagery can decrease the loop closure accuracy. Here,
we present a lidar-based place recognition system that is robust to these challenges. This probabilistic framework
learns a generative model of place appearance and determines whether a new observation comes from a new or
previously seen place. Highly descriptive features called the Variable Dimensional Local Shape Descriptors are
extracted from lidar range data to encode environment features. The range data processing has been implemented
on a graphics processing unit to optimize performance. The system runs in real-time on a military research
vehicle equipped with a highly accurate, 360 degree field of view lidar and can detect loops regardless of the
sensor orientation. Promising experimental results are presented for both rural and urban scenes in large outdoor
environments.
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1. INTRODUCTION

An enabling technology for future autonomous military vehicles is the production of an accurate environmental
map that allows an Unmanned Ground Vehicle (UGV) to model its environment so as to interact with it
effectively. Past systems relied heavily on the availability of Global Positioning System (GPS) and sophisticated
inertial navigation systems to provide an accurate pose estimate of the vehicle to register range data from lidar
or stereo imagery. However, GPS dropouts often occur due to low signal strength and GPS is generally not
available indoors. The likelihood of GPS dropout is particularly high in the urban battle-space where buildings
and infrastructure occlude the receiver from the signal. The availability of low-cost GPS jamming technologies
adds to the problem. An alternative technique is therefore necessary to allow accurate mapping in the absence
of GPS.

Over the past decade, a family of algorithms called Simultaneous Localization and Mapping (SLAM) emerged
as the dominant technique for dealing with this problem. SLAM attempts to estimate the UGVs pose by detecting
and re-observing salient features in the environment. The position of these landmarks act as geometric constraints
to improve the robot pose estimate. The improved robot pose estimate is used to improve the pose estimate of
the landmarks themselves. On-line SLAM techniques are subject to failure, especially over large areas, due to
linearization errors and improper data associations (Castellanos et al.)1

To overcome these problems, a family of techniques called Appearance-Based SLAM (ASLAM) can be used
that decouple the loop closing process from the geometric SLAM algorithm and runs it in parallel (Cummings
and Newman),2(Magnusson et al.),3(Ho and Newman)4. Here, the loop closing process is essentially a scene
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recognition computer vision task. In this way, loop recognition is not bound to the pose estimates of the SLAM
procedure and hence not prone to failure resulting from gross errors in the robot pose estimate. For practical
tasks, such as robot navigation, loop closing data must be used to update the geometric SLAM formulation and
techniques have been developed to compute the transform necessary to close the loop. Though most ASLAM
algorithms were developed for use with monocular or stereo imagery, the techniques have recently been extended
to range sensors such as lidar. Lidar-based ASLAM benefits from increased accuracy of range data, and is robust
to large changes in lighting and orientation making it an ideal candidate for place recognition. The introduction
of several new high-speed, high-definition range sensors on the market has enabled this technology.

This paper presents a range-based place recognition system that attempts to address the shortcomings of
video-based ASLAM. In particular, a shape descriptor called the Variable-Dimensional Local Shape Descriptor
(VD-LSD) is computed for 360 degree range scans and used to learn a generative model of place appearance
and determines if an observation comes from a new or previously seen place. Section 2 provides a review of
appearance-based systems, Sections 3 and 4 detail the VD-LSD based ASLAM system used here and results
from initial field trials. The results are discussed in Section 5. Finally, Section 6 presents conclusions and future
work to improve the system.

2. BACKGROUND

ASLAM algorithms attempt to determine when a place has been revisited by computing similarity between
different image scenes. State-of-the-art ASLAM techniques have their roots in text retrieval systems used by
popular search engines. Typically, documents are parsed and categorized and a vector containing the frequency
of occurrence of words in the document is used to categorize it. ASLAM techniques are a visual analog of these
systems where the frequency of occurrence or co-occurrence of visual features is used to match a scene against
a database (Sivic and Zisserman)5.

In this approach, an image is treated as a Bag-of-Words (BoW) much like a text document, where a “word”
corresponds to a region in the space of invariant descriptors. Features are extracted from training images and
BoW clustering is performed to partition the feature space. Words are formed from the centroid of each feature
cluster to create a vocabulary to which new images will be categorized. A weight is associated with each
cluster and is inversely proportional to the frequency of the word occurrence. A new image is characterized, by
appearance, as the set of words that it contains extracted from the vocabulary (the appearance vector). Various
techniques are used to compare these appearance vectors and find loop closures.

Ho and Newman4 identified a repeated visit by checking whether a sequence of image appearances has
previously occurred. The similarity between two images is defined as the normalized inner product (cosine of
the angle) between the appearance vectors of the two images. A similarity matrix was constructed and used to
search for repeated sequences. Noise was greatly reduced in the similarity matrix by noticing that the largest
eigenvalues are associated to the noise, and should be removed from the spectral decomposition of the matrix.
An entropy argument is provided for deciding how many eigenvalues to remove.

Eade and Drummond6 used a similar BoW technique but were able to update their vocabulary as each new
image was processed rather than through an off-line supervised learning technique. The authors mentioned in
the paper that the worst failure mode of the system is spurious loop closure given extensive repeated structure
and suggested the use of a probabilistic model to mitigate this issue.

FAB-MAP (Cummings and Newman)7 learns a generative model for the BoW data that captures the tendency
of combinations of appearance words to co-occur reflecting that they are generated by common objects in the
environment. By learning a Bayesian model of these common objects in an unsupervised way, FAB-MAP improves
the inference mechanism by robustly reasoning about which set of features are likely to appear or disappear
together. Doing so allows them to overcome the challenge of perceptual aliasing, wherein similar looking image
frames from different places become particularly hard to differentiate during loop closure. Specifically, FAB-MAP
begins by defining a probabilistic graph of latent variables (locations and objects) and the observed variables
(appearance vectors from images). For a given appearance vector that is derived from an incoming image frame,
the probability of revisiting a previous location is computed based on a Bayesian framework that includes large
dimensional joint probability distributions that are learned from training data and efficiently computed using
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Chow-Liu trees. The final detection of a loop is made by a Maximum Likelihood data association step followed
by a validation step that uses epipolar geometry estimates and Random Sample Consensus (RANSAC). To
achieve an efficient large scale implementation, FAB-MAP 2.0 (Cummins and Newman)2 uses an inverted index
retrieval architecture that requires modification to the way probabilities of revisits were computed and updated
in FAB-MAP 1.0. FAB-MAP 2.0 has been demonstrated on a large 1000 Km dataset with few false positive
results.

ASLAM has predominantly been applied to 2D imagery, but has begun to be applied to 3D range data. In
(Steder et al.),8 Normal-Aligned Radial features (Steder et al.)9 were extracted from a range image and used to
create a BoW vocabulary. A similarity for all the scans in the database was computed based on the appearance
and ordered from most to least similar. Feature points were then extracted from the scan pairs and candidate
transformations were computed. The transformation with the highest score above a certain threshold is used
to select the final recognized place. In (Paul and Newman),10 image-based FAB-MAP was augmented with 3D
lidar data used to capture the spatial distribution of visual words in the scene. A random graph is used in
which nodes are the words and edges are the distributions over distance and are viewpoint invariant. Results
indicate improved precision and recall rates over FABMAP-2.0. Magnusson et al.3 propose an approach based on
extracting and matching a global appearance descriptor derived from the Normal Distribution Transform (NDT).
The input to the algorithm was a three dimensional (3D) point cloud obtained from a LIDAR scan of the scene.
NDT models the global shape of the scene as a collection of locally centered normally distributed probability
density functions. The covariance matrices of the density functions are used to classify local shapes as one of
many idealized classes and sub-classes of shapes. The appearance descriptor of the scan is then constructed based
on a set of histograms of shape classes computed at a set of range intervals. Since the appearance descriptor
uses the orientation of surfaces, rotational invariance is achieved by generating histograms based on multiple
surface orientations. A metric is proposed that quantifies the difference between two appearance descriptors.
A threshold on this difference metric, which is learned off-line based on an expectation maximization method,
allows identification of revisits. The authors recognize the possibility of more robust results through the use of
machine learning to disregard non-discriminative features and the use of more elaborate analysis of the similarity
matrix between scene matches than just a single threshold. However, despite these limitations in the algorithm,
the authors report recall rates of up to 70% at 100% precision for indoor and outdoor datasets.

3. SYSTEM DESCRIPTION

The system developed here is a multi-sensor ASLAM system shown in Figure 1 and is based on the FAB-
MAP system previously described. The algorithm is run in parallel for both image-based FAB-MAP, using SIFT
features (Lowe),11 and range-based FAB-MAP. Separate place recognition results are generated from both sensor
streams and integrated to provide a final loop closure result. The application of ASLAM to separate sensors
running asynchronously is a novel aspect of this work and is the subject of future research. All further discussion
in this paper focuses only on the range-based ASLAM system developed here.

The system consists of two phases, training and real-time loop detection. In the training phase, representative
lidar data consisting of full 360 degree scans are input to the feature extraction algorithm. VD-LSD features, are
output from the training imagery. Bag of words clustering is performed in the VD-LSD feature space to group
features of similarity and create the representative vocabulary.

During run-time, new VD-LSD features are extracted from data. A probabilistic detector model converts the
extracted features into an appearance vector which determines which words are present in the current scene. For
a vocabulary of n words, the associated VD-LSD appearance vector is denoted by Zk = z1, . . . , zn, where the
binary z value 1 indicates the presence of the word in the current frame. The appearance vectors are then fed
to the scene recognition module where the current scene is compared to previous scene and decision of a match
is made. If a match has been determined, the current and matched frames are then fed to a 6-DOF transform
computation module. If the detected loop is a true loop, then a valid transform can be computed and used to
perform geometric loop closing. In the case of a false positive match, the 6-DOF module will detect the geometric
inconsistency and discard the match.
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Figure 1. The lidar-based ASLAM system is based on the FAB-MAP algorithm and uses Variable Dimensional Local
Shape Descriptor to create the vocabulary used for place recognition. VD-LSD features are extracted from real-time
lidar data, converted to an appearance vector and input to the FAB-MAP algorithm. If a match is detected, a 6-DOF
transform can be computed to determine the transformation between matched frames.

3.1 Variable-Dimensional Local Shape Descriptor

The principal input to the place recognition algorithm is the Variable-Dimensional Local Shape Descriptor,
described in (Taati et al.),12 that has previously been used for model-based object recognition and pose estimation
of range data.

The VD-LSD for a salient point is generated from invariant properties extracted from the principal component
space of the local neighbourhood. The 3x3 covariance matrix of the local neighbourhood around each point is
computed and their eigenvalue decomposition is used to associate an orthonormal frame and the three Eigenvalue
scalars. Using these vectors and scalars, seven positional, nine rotational and six dispersion properties for all
points can be generated to form a variety of histograms that carry various levels of information about the local
geometry.

The VD-LSD offers a generalized form that subsumes a large class of popular descriptors in literature, such as
Spin Images (Johnson and Hebert),13 Point Signatures (Chua and Jarvis)14 and Tensor Correspondence (Main et
al.)15 These descriptors lie in very small dimensional subspaces spanned by the at most 22-dimensional VD-LSD.
In taking such a maximalist approach, VD-LSD captures local geometry of the range data better and therefore
achieves better robustness in the matching phase.

The descriptive power of these properties is not equal and depends on the local geometries. Therefore,
the optimal property subset could be different for different models. A forward selection scheme (Taati and
Greenspan)16 is utilized to select the near-optimal subset for each object. The desired subset of properties is
determined off-line for each object and only those properties are extracted in the on-line computation.

The VD-LSD extraction algorithm is parallel and highly suitable for a Graphics Processing Unit (GPU)
implementation. Processor-intensive modules have been implemented in CUDA to run on an NVIDIA GPU, to
offload the CPU. For this work, a total of six dimensions have been chosen, including three positional and three
dispersion properties. The number of histogram bins along each dimension is two, thereby producing descriptors
of length 64.
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3.2 6-DOF Transform

The 6-DOF transform between the current frame and the recognized frame is essential for map correction in
metric SLAM. Therefore, if a match is found during scene recognition, the 6-DOF transform is then computed.
This process can also help to validate the FAB-MAP output as improper loop detections can be discarded during
the computation of the transformation.

Two metrics are used to measure the degree of similarity between the VD-LSDs from the current frame and
the VD-LSDs from the recognized frame. The first is the Euclidean distance between two VD-LSD descriptor
vectors to evaluate the similarity between them. The second metric is an ambiguity measure based on the ratio
of the top two ranking matches. The ratio between the Euclidean distance of the best-ranking match and the
second-ranking match should be smaller than 1 to be a good match.

Once a set of tentative matches are obtained, a RANSAC approach (Fischler and Bolles)17 is performed to
remove the outliers. Three tentative matches are selected randomly to compute the 6-DOF transform using
the rigid body transformation approach, to serve as a hypothesis. The number of supporting matches from the
tentative set are obtained for each hypothesis. This process is performed repeatedly and the hypothesis with the
highest number of supporting matches is selected. All the supporting matches are used to compute the 6-DOF
transform using a least-squares minimization approach.

Various validation schemes can be performed during the 6-DOF transform computation as well. A minimum
number of supporting VD-LSD matches can be specified to be a valid recognition. Moreover, the 6-DOF transform
obtained can be used for verification, since both the translations and two of the three rotations should be small
for a correct recognition constrained by ground vehicle motion.

Figure 2. Images of the trial environments. (top) The rural environment is an open prairie area with sparsely populated
infrastructure, rolling grasslands and gravel roads. (bottom) The urban environment contains buildings, cars, and paved
roads.

4. RESULTS

Field trials were conducted in September of 2011 on the DRDC Suffield Experimental Proving Ground to test
the lidar-based ASLAM systems ability to perform place recognition. Two separate sets of trials were conducted
to test the performance of the system in representative rural and urban environments (Figure 2). A research
variant of the Multi-Agent Tactical Sentry (Figure 3), a modified Kawasaki mule developed at DRDC Suffield,
was retrofitted with a Velodyne HD lidar and computing hardware to carry out the experiments. Data from the
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Velodyne, and GPS were collected using DRDC’s Architecture for Autonomy logging capabilities. This allowed
the researchers to playback the sensor data at a later time and exercise the ASLAM system as though it were
operating on live data. Additional tests were performed by routing the data directly into the ASLAM system to
ensure real-time use. All software, off-line and in real-time, was tested on a high performance server housed on
the MATS vehicle. The server contains a 3.33GHz Hexa-Core Intel Core i7 Extreme Processor, 12GB of memory
and a NVIDIA Geforce GTX 580 GPU used for feature detections and descriptor calculation.

The Velodyne Lidar rotates 360 degrees in the azimuth at 15Hz and produces approximately one million
range reading per second. 360 degree scans were captured twice per second, converted to 3D point clouds (X,Y,Z
values), and sent to the ASLAM system.

Tests were performed in the urban environment shown in Figure 2 (bottom). The vehicle was manually
driven and data was logged for later processing. Figure 4 (left) shows the path that the vehicle was driven
during testing. Blue dots indicate the GPS position during non-loop closure while red dots indicate the GPS
position when a loop closure is detected. GPS was used for display and validation purposes and is not input
to the ASLAM algorithm. No 6-DOF validation was performed in this analysis. The average run-time is less
than one second per frame. To prevent loop detections between consecutive scans, the prior probability for the
previous 20 scans was set to zero. This equates to roughly 10 seconds of driving and was chosen based on user
experience.

Figure 3. Research platform used to conduct the tests. The Velodyne lidar housed on top of the vehicle was used for all
tests.

The trajectory included several loops around paths in either the same or the reverse direction. Several
confidence thresholds were tested and used to make the final determination if the detection represented a true
loop closure. Table 1 summarizes the results. Predictably, more loops could be detected using a lower confidence
threshold, but at the expense of more false positives. Even with a confidence threshold of 99.99%, 92 loops were
detected with only 7 false loops. Since false positives can lead to catastrophic failures in a geometric SLAM
formulation, a high threshold (> 99%) should be used. The loop validation scheme outlined in Section 3.2 can
be used to further eliminate false positives, but it was not implemented at the time of testing. Figure 5 shows
typical scan results for true and false loop detections. Note that the algorithm is able to detect loops when
passing in opposite directions. True matches were verified by comparing GPS location of the resulting scans. A
match was deemed a true loop closure if the distance between the 2 scans was less than 10m. Despite the high
threshold numerous positive loops were detected that could be used to correct a geometric SLAM formulation.
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Table 1. Urban dataset test results. Total number of loops, true loops, and false loops detected for a given confidence
threshold. False positive were those loops where the GPS position between matches was greater than 10 meters.

Threshold % loops detected positive (%) false (%) Total Scans

60 237 134 (57) 103 (43) 596
80 207 129 (62) 78 (38) 596
90 189 127 (67) 62 (33) 596
97 135 112 (83) 23 (17) 596
99 127 108 (85) 19 (15) 596
99.99 92 85 (92) 7 (8) 596

Figure 4. GPS trajectories for the urban (left) and rural (right) tests. Red dots indicate the nearest recorded waypoint
from where a loop closure was detected. A confidence threshold of 99% was used to determine true loop closures in this
case.

Similar results are reported for the rural environment (Table 2). The percentage of positive loop closures is
much lower than in the urban dataset while the percentage of false positives is higher especially when using the
high confidence thresholds. This can most likely be attributed to the urban environment having more features
and more distinct features than the rural dataset. The average number of features detected per image was 1567
for the urban dataset as opposed to 1314 for the rural dataset.

Table 2. Rural dataset test results. Total number of loops, true loops, and false loops detected for a given confidence
threshold. False positive were those loops where the GPS position between matches was greater than 10 Meters

Threshold % loops detected positive (%) false (%) Total Scans

60 528 292 (55) 236 (45) 1343
80 490 287 (59) 203 (41) 1343
90 454 278 (61) 176 (39) 1343
99 309 225 (73) 84 (27) 1343
99.99 179 148 (83) 31 (17) 1343
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The validation and 6-DOF transformation scheme described in Section 3.2 was not available at the time that
the initial tests were performed, but has since been added to the system. An ambiguity ratio threshold of 0.8
was used to reject ambiguous candidate features. If a minimum of six tentative matches could not be found after
applying the RANSAC rigid body transformation approach, the loop closure was rejected. Figures 5 show the
results of VD-LSD alignment for several true loop closures while Figure 6 shows false positive loops that were
rejected by the 6-DOF validation algorithm.

Figure 5. Top-down view of LIDAR point clouds matched by the VD-LSD ASLAM system.
(top) True loop closure (same direction) 6-DOF transformation: [0.1m,−0.2m,−0.7m, 1.2◦, 0.03◦,−1.5◦].
(middle) True loop closure (opposite direction) 6-DOF transformation: [0.4m,−0.1m,−1.2m,−0.2◦,−7.7◦, 178.3◦].
(bottom) True loop closure (opposite direction) 6-DOF transformation: [−1.1m, 0.3m, 1.9m,−0.6◦,−4.3◦, 173.1◦].
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Figure 6. False positive loop closure detected by the ASLAM system that were later rejected by the 6-DOF validation
and transformation algorithm. Note the similarity in the overall look of the scan. The top scans appears to be similar,
but rotated 180◦.

5. DISCUSSION

Even in the urban environment with the highest confidence level, the system successfully detected 92 loops
with many successive detections around a single loop. This is more than enough detections to augment a
geometric map and ‘close the loop’. State-of-the-art systems perform loop closure at a low rate since it is an
intensive procedure. In this case, it may be advisable to ignore loop detections so that real-time mapping can
be maintained.

The multi-sensor approach presented at the beginning of Section 3 should improve the recognition results,
especially in cases where their is an abundance of scene texture, but a lack of 3D lidar-based features. In this
case, the image-based ASLAM should still be capable of detecting loops. Conversely, in low light or low texture
areas, the lidar-based place recognition would still function.

An automated keyframe detection method, similar to (Muhammad and Lacroix),18 could be used that mea-
sures similarity between scans and only input scans that are sufficiently different for loop detection. This may
increase the efficiency of the system as unnecessary information is not added to the database. Under such a mech-
anism, scans would be added more often when the vehicle is travelling at a faster rate or turning and wouldn’t
include new scans when the vehicle is stationary. The Euclidean similarity between consecutive VD-LSDs, that
is used in validation and 6-DOF calculation (Section 3.2), may have merit as a measure of scan distinctiveness.

6. CONCLUSIONS AND FUTURE WORK

It was previously noted that monocular and stereo-based ASLAM systems suffer from an inability to cope with
large variations in lighting and approach angle (especially in the case of forward looking cameras). This paper
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presented a novel approach to place recognition that sought to alleviate these problems by using a range sensor
and a feature descriptor called the Variable Dimensional Local Shape Descriptor that was computed from high
definition lidar data and fed to the well known FAB-MAP ASLAM system. Preliminary results show, for the
datasets tested, the system is able to accurately detect previously seen environments even when approached from
180 degrees out of phase and in different lighting conditions. Furthermore, it is able to perform this operation
in real-time due in large part to the GPU implementation of the VD-LSD algorithm.

The authors believe a multi-modal approach to sensing is important, especially in the context of the battlefield
where environmental conditions vary so widely. Integration of lidar-based ASLAM into the larger multi-sensor
approach presented here will allow the system to operate in a large variety of environmental conditons and will
be the main focus of future efforts. To date, all tests have been performed using a VD-LSD with 6 dimensions
and a bin size of 2. Alternate descriptor sizes may allow better detection of loop closures but at the expense
of a longer processing time. Study of the optimal number of dimensions and bin size along each dimensions
will be the subject of future work. Integration of alternative 3D range sensors such as the well known Kinect
sensor and the Autonosys lidar will also be explored. The output of the system will also be integrated into a
full SLAM solution with the 6-DOF transform being used to perform geometric loop closure. We have presented
an architecture that computes video and lidar-based ASLAM results in parallel. Successful integration of these
parallel streams to form a seamless ASLAM output will be the subject of future research.
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