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Abstract—Noninvasive functional imaging of awake, unre-
strained small animals using motion-compensation removes the
need for anesthetics and enables an animal’s behavioral response
to stimuli or administered drugs to be studied concurrently with
imaging. While the feasibility of motion-compensated radiotracer
imaging of awake rodents using marker-based optical motion
tracking has been shown, markerless motion tracking would
avoid the risk of marker detachment, streamline the experimental
workflow, and potentially provide more accurate pose estimates
over a greater range of motion. We have developed a stereoscopic
tracking system which relies on native features on the head to es-
timate motion. Features are detected and matched across multiple
camera views to accumulate a database of head landmarks and
pose is estimated based on 3D-2D registration of the landmarks
to features in each image. Pose estimates of a taxidermal rat head
phantom undergoing realistic rat head motion via robot control
had a root mean square error of 0.15 and 1.8 mm using markerless
and marker-based motion tracking, respectively. Markerless
motion tracking also led to an appreciable reduction in motion
artifacts in motion-compensated positron emission tomography
imaging of a live, unanesthetized rat. The results suggest that fur-
ther improvements in live subjects are likely if nonrigid features
are discriminated robustly and excluded from the pose estimation
process.

Index Terms—Markerless optical motion tracking, motion com-
pensation, positron emission tomography (PET).

I. INTRODUCTION

P OSITRON emission tomography (PET) imaging of
small animals is a vital component of basic neuroscien-

tific research, enabling longitudinal studies of the molecular
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changes in the brain resulting from controlled interventions
[1], [2]. The vast majority of such studies are performed on
anesthetized animals to avoid any motion that might cause
artifacts in the reconstructed images. However, not only do
different anesthetics have varying impact on animal physiology
and the resulting PET measurements [3], [4], this approach
also precludes imaging an animal and concurrently studying its
behavioral responses to external stimuli or administered drugs.
The ability to image animals while awake and unrestrained

would greatly enhance the potential of PET in neurological in-
vestigations. For example, it would allow: 1) study of the func-
tional response to sensory stimulation that requires the animal’s
conscious attention, especially when using radiotracers that do
not get trapped like FDG, and therefore require that imaging
commences at the time of injection to enable the application of
kinetic models; 2) study of the concurrent behavioral and func-
tional response following a cognitive, pharmacologic or envi-
ronmental challenge; and 3) study of dynamic functional pro-
cesses, especially those related to receptor-ligand binding. A
hybrid approach providing some but not all of this capability
involves delivering a challenge or stimulus to an awake animal
during the tracer uptake phase, then anesthetizing and imaging
the animal [5]. In this approach the impact of anesthesia on
the PET measurements is avoided and net changes caused by
an intervention can be detected. However, the approach is not
applicable to all tracers and does not allow the study of dy-
namic (transient) changes or correlations. The full range of pos-
sibilities requires that animals can be imaged while awake and
unrestrained.
Two recent technologies enable an animal to be imaged while

awake and unrestrained. The first, applicable only in rats, is
a miniature head-mounted PET tomograph, termed “RatCAP,”
which eliminates motion by moving rigidly with the head [6].
Using this device, Schulz et al. quantified levels of the neuro-
transmitter dopamine in the brains of active and anesthetized
rats [7]. Dopamine plays an important role in regulating reward-
driven learning and behavior, movement and memory, and has
also been implicated in Parkinson’s disease. The study showed
increased dopamine levels in anesthetized rats compared with
awake rats and an inverse correlation between dopamine levels
and physical activity. More fundamentally, it demonstrated the
feasibility of using PET to study correlations between brain
function and behavior in awake animals. Notwithstanding the
major technological advance RatCAP represents, the counter-
balance mechanism used to support the scanner weight could
potentially restrict natural movement and behavior of the rat. It
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also seems unlikely the technology could be scaled down fur-
ther for imaging the mouse brain while maintaining sufficiently
high photon detection sensitivity [8].
Another means of imaging awake rodents (rats or mice),

which can utilize conventional scanner technology, involves
motion compensation. Here, rigid motion of the head is
recorded during the study and subsequently accounted for
before or during image reconstruction [9], [10]. The feasi-
bility of performing radiotracer imaging on fully conscious
rodents in conjunction with stereo-optical head motion tracking
and motion compensation has been demonstrated both for
animals confined to a tube [11], [12] and for animals within
an open chamber [13]. In each case, motion tracking was
marker-based—that is, it involved specially designed markers
attached to the head. In our experience, use of attached markers
increases the risk of failed experiments since the marker and
head motion can become decoupled, lengthens experimental
protocols since animals must be trained to tolerate attached
markers, and restricts the detectable range of motion due to
limitations on the marker size and placement. By contrast,
markerless motion tracking, which does not require anything to
be attached to the head, avoids the risk of marker detachment
and streamlines the experimental workflow since animals
do not need to be acclimatized. Moreover, it can potentially
provide more accurate pose estimates over a greater range of
motion by exploiting many features spread across the head.
Markerless tracking of object pose has been studied exten-

sively in a wide variety of fields, including human motion
capture, robot navigation, object recognition, virtual and aug-
mented reality, and the movement of insects in flight [14]–[17].
In a markerless approach, features usually constitute abstracted
elements such as points, lines, contours and silhouettes and
are determined directly from images collected under either
uniform or patterned visible or infra-red (IR) illumination [18].
Sophisticated point feature detectors exhibiting invariance to
a range of factors such as translation, rotation and scale have
found extensive use in stereo-vision setups where it is necessary
to match features robustly between disparate views [19]. The
method we describe uses such features.
Structured light techniques, in which patterned light is pro-

jected onto the object to assist feature detection and matching,
have been used recently to track human head and neck motion
in radiotherapy and PET [20]–[22]. The static accuracy of the
Microsoft Kinect [20], [21] over the range of useful working
distances appears to be on the order of a few millimeters for
head translations and a few degrees for rotations. The system
in [22] is considerably more accurate than the Kinect, however
the light pattern and decoding scheme suit only relatively small
head movements, not the large movements often performed by
rodents [23].More fundamentally, however, structured light pat-
terns can easily be distorted by the high local contrast of fur,
making robust surface reconstructions for animals difficult [24].
In this paper, we describe a multi-camera markerless tracking

system for awake rats which operates under uniform visible
lighting. Conceptually, our approach is similar to the simul-
taneous localization and mapping (SLAM) problem in mobile
robotics where robot-mounted sensors are used to obtain a con-

Fig. 1. Photograph of the laboratory setup showing the four cameras arranged
in two pairs and mounted on brass posts attached to an optical table. On the
left is the taxidermal rat phantom attached to the robot end-effector. In the top
right is the MicronTracker system used for marker-based tracking. Matt black
cardboard (not shown) was mounted behind the rat’s head during the experiment
to minimize SIFT features detected in the background.

sistent set of landmarks (i.e., a map) in the environment at the
same time as the robot’s motion is estimated [17]. Rat tracking
is an analogous problem if one considers the sensor (tracking)
frame fixed and the rat as the moving environment. In this case
we seek to identify a consistent set of landmarks on the surface
of the head that can be used for pose estimation. The SLAM
framework also provides a means of incorporating information
from the re-observation of landmarks in order to reduce errors
and improve pose estimates over time—though we have not
considered this aspect here.
The paper is structured as follows. Section II is the system

overview where we outline the various stages of the markerless
tracking method, from camera calibration and feature detection
to pose estimation. In Section III, we describe the validation
experiments using a realistic rat phantom and a live animal. In
Sections IV and V, we report and discuss the results.

II. SYSTEM OVERVIEW

A. Motion Tracking System

The tracking system uses 640 480 resolution monochrome
Flea2 CCD cameras (Point Grey Research, Richmond, BC,
Canada) fitted with 12 mm lenses (GMN21214, Goyo Optical,
Japan). The number of cameras, , should be 2; for this
work we used . Without lenses the Flea2 has dimensions
mm mm mm. The cameras link to a PC via the

IEEE 1394b (800 Mb/s) interface. Maximum frame rate of the
Flea2 is specified as 80 frames per second (fps) but in practice
this is limited by the IEEE 1394b bandwidth. Using a pixel
depth of 8 bits, four cameras on the same IEEE 1394 bus can
stream at slightly under 60 fps, which is more than sufficient for
tracking rat head motion [11]. Therefore, a single bus was used
for all our experiments. Cameras on the same bus automatically
synchronized frame capture to within 10 .
The cameras were arranged in front of the animal in two

pairs, with each pair viewing a different side of the animal’s
head (Fig. 1). The pair-wise arrangement served to increase the
spatial distribution of detected features. In the phantom valida-
tion, the cameras were rigidly mounted to an optical bench using
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brass posts (Fig. 1). For the animal study they were attached to
an aluminum frame mounted to the PET scanner (Fig. 6).

B. Camera Calibration

The internal optical parameters of each camera and the ex-
terior orientation (i.e., the rigid-body transformation relating
the camera frame to the world frame) were obtained using the
multi-camera self-calibration toolbox [16]. A sequence of sev-
eral thousand frames of a small light source (the calibration ob-
ject) moved throughout the working volume served as input.
The source was rastered slowly through the working volume
using a 6-axis robot (Epson C3-A601S, SEIKO Corp., Japan).
Uniform sampling of the working volume in this way gave more
accurate calibration results than waving the light source by hand
(the approach suggested in [16]).
Assuming a pinhole camera model in which world points

project to image points according
to

(1)

where is the camera calibration matrix, the set of calibration
matrices is obtained in [16] by iteratively
minimizing the reprojection error between measured and esti-
mated object locations. An advantage of this method over other
multi-camera calibration methods is that the calibration object
need not be visible to all cameras in any given frame. How-
ever, we enforced this requirement to improve the calibration
accuracy. We also improved the accuracy by supplying inde-
pendent fixed estimates of the internal camera parameters (prin-
cipal point, focal length) and lens distortion coefficients (two ra-
dial, two tangential) for each camera rather than iteratively esti-
mating these within the calibration. The independent parameter
estimates were obtained using the method in [25].
Calibrations obtained using the method in [16] are deter-

mined in an arbitrary world frame, the origin of which is the
centroid of the cloud of points representing the frame-by-frame
location of the calibration object. Moreover, the calibration is
determined only up to an unknown scale (i.e., a factor relating
distances in the arbitrary world frame to real-world distances).
Therefore, transformation of the calibration to a known,
real-world reference frame requires that we 1) resolve the scale
factor, and 2) determine the (rigid-body) alignment between the
arbitrary world frame and the desired reference frame. Scale
was easily resolved by comparing known real-world distances
(measured using the robot) with distances measured in the
markerless frame. Frame alignment is explained in Section III.

C. Feature Detection

Features were detected using the scale-invariant feature trans-
form (SIFT) algorithm [19]. SIFT features are highly distinctive
and able to be detected and matched reliably across disparate
views of the same object. They are also reported to provide rea-
sonable discrimination in animal textures [26]. For a full de-
scription of the SIFT algorithm and assembly of the SIFT fea-
ture descriptor, see [19].
Briefly, SIFT features typically correspond to high contrast of

variation across multiple image scales. Examples of SIFT fea-
tures are shown in Fig. 2 (see also Fig. 11). Mathematically,
SIFT features correspond to local maxima or minima in scale

Fig. 2. Example of SIFT features (red squares) and matches (white lines) for a
pair of images of a taxidermal rat head.

space, where scale space represents the image signal as a func-
tion of viewing depth. In practice, the discretized scale space
can be generated efficiently for a given image using repeated ap-
plication of a difference-of-Gaussian operator. Each local max-
imum or minimum in scale space—a so-called “keypoint”—is
represented by a 1-D 128-element descriptor, the elements of
which are determined from radial sampling of the local image
gradients. Since sampling is performed with respect to a local
coordinate system defined by the scale and the orientation of the
dominant gradient, the keypoint descriptor exhibits invariance
to scale, rotation and translation.
Using a publicly available implementation of the SIFT algo-

rithm [19], SIFT features were detected in each of the four im-
ages (one per camera) comprising a “frame.” An example of
SIFT applied to images of a taxidermal rat head is shown in
Fig. 2. After detecting features, the 2-D feature locations were
corrected for lens distortion before further processing.

D. Feature Matching

SIFT features were matched using a nearest neighbor ap-
proach [19]. In this approachwe compute the Euclidean distance
between a SIFT descriptor, , and each of its candidate matches.
If the distance to the nearest neighbor (denoted “NN”) is signif-
icantly closer than the distance to the second nearest neighbor
(denoted “2NN”), there is a high probability of a true match.
Mathematically, this criterion is given by

(2)

where denotes the Euclidean distance operator and the pa-
rameter can take any value in the interval [0,1]. Increasing
results in less strict matching, with a concomitant increase in

outliers (false matches). A value of 0.6 for typically provides a
good trade-off between inliers (true matches) and outliers [19].
In the frame processing pipeline shown in Fig. 3, features

were matched between the two images constituting a camera
pair (Fig. 3, blue shaded region). Matching across camera pairs
was found to be unnecessary since the angular separation of the
camera pairs and the shape of a rat’s face meant few, if any,
matches were obtained.

E. Generating Landmarks

In a true match, the two features represent the projection of
a unique 3-D location—what we term a landmark—onto the
respective image planes. Neglecting noise, a landmark corre-
sponds to the point of intersection of the back-projected rays
joining each of the two feature points to its respective camera
center. Determining this intersection, or an estimate of it in the
case of noisy data, is called triangulation. We used the direct



KYME et al.: MARKERLESS MOTION TRACKING OF AWAKE ANIMALS IN POSITRON EMISSION TOMOGRAPHY 2183

Fig. 3. Flowchart of data processing. Features (SIFT descriptors) in images
from the two pairs of cameras (1A/1B and 2A/2B) were matched separately
(blue shaded regions) to enable determination of 3-D head landmarks using tri-
angulation (orange shaded regions). Image descriptors were also matched to
descriptors stored in the database (green shaded regions) providing the informa-
tion needed for pose estimation (pink shaded region). Once pose was estimated,
new landmarks were transformed to the initial pose and stored in the database
with their descriptor (orange shaded regions). Note that dashed boxes refer to
processes and nondashed boxes to data (inputs/outputs).

linear transform approach [27], [28] to obtain a triangulation
estimate for each feature match. The resulting landmarks were
then stored in a database together with a SIFT descriptor (ob-
tained by averaging the descriptors involved in the match). The
procedure is shown in Fig. 3 (orange shaded region). Note that
once the pose for the frame was computed (see below on pose
estimation), any landmarks generated from that frame were spa-
tially transformed according to the inverse pose before being
stored in the database. Thus, landmarks accumulating in the
database represented a sparse 3-D model of the head surface, in
the initial pose, that evolved as each new frame was processed.

F. Pose Estimation

The procedure for pose estimation (Fig. 3, pink region) was
similar to that used in [17] to solve the SLAM problem for an
indoor mobile robot. Conceptually, it amounts to a 3D-2D reg-
istration: finding the optimal alignment between the 3-D head
model stored in the database, and features found in the 2-D im-
ages comprising each new frame.
For each frame we matched features found in each of the four

camera images to features in the database (Fig. 3, green regions).
Given at least three such matches, pose can be estimated as the
rigid-body transformation minimizing the reprojection error be-
tween measured and estimated feature locations (Fig. 4). Repro-
jection error, , is the distance (in pixels) between measured and
estimated feature locations and is given by

(3a)

where

(3b)

Fig. 4. Pose estimation. After identifying feature matches (shown here in
green) between the landmark database and image, pose was estimated by
finding the rotation, , and translation, , that minimized the reprojection error
between measured and estimated feature locations.

Here, is a measured feature location for camera and
is the estimated feature location. The estimated location is ob-
tained in (3b) by transforming the matched database landmark
according to the current pose estimate , then projecting

it onto the image plane of camera using the camera calibra-
tion matrix operator . In (3b), is represented by a 4 4
rigid-body transformation matrix and, for convenience, is ex-
pressed using homogeneous coordinates, i.e., .
Given matches between the database and an image acquired
by camera , if the measured landmark locations on the image
are and the corresponding
estimated locations are , the
reprojection error vector for camera is given by

(4)

where

(5)

Minimizing the reprojection errors across all matches to
obtain a pose solution was performed using a Gauss-Newton
(G-N) iterative approach. Rather than determining the optimal
transformation directly, we followed [17], [29] and solved
instead for a small correction to the previous pose, viz

(6)

Here, is the new pose, is the previous pose, and is the cor-
rection. In contrast to (3b) where pose is represented using a 4
4 transformation matrix, here pose is represented as a six-ele-

ment vector containing the yaw (angle about the -axis), pitch
(angle about the -axis), roll (angle about the -axis) and ,
, and position coordinates, respectively. This six-parameter
representation of pose is equivalent to the 4 4 matrix repre-
sentation used in (3b), i.e.,

(7)
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Given a vector of reprojection errors, , calculated according
to (4) and (5), we want such that

(8)

where is the Jacobian matrix with elements

(9)

The underlying assumption here is that small changes in the
pose parameters result in proportional changes in the projected
location. For the over-constrained case, where there are more
error measurements than parameters, we solve for using
least-squares minimization

(10)

The Jacobian for camera is the matrix in which the
th and th rows are, respectively

(11a)

and

(11b)

Jacobian elements were computed numerically by determining
the small change in image location ( and ) for small
changes in each of , , , , , and . Note that the error
vectors from each camera [i.e., (4)] were concatenated into a
single error vector, , and similarly for the Jacobians [i.e., (11)]
to form .
Equation (10) was solved using singular value decomposition

[27]. A total of 10 G-N iterations were performed, with the pose
solution being updated according to (6) after each iteration.

G. Outlier Rejection Strategies

Spurious data arising in the processing pipeline, including
SIFT features with poor discrimination and false matches, can
limit the reliability of pose estimates. Several outlier rejection
strategies were used to exclude spurious data during processing:
Background Subtraction: Background subtraction was ap-

plied to acquired camera images to restrict detected SIFT fea-
tures to the region of the rat’s head/neck (what we term the
“foreground” region). For each camera, intensity thresholding
was used to identify the major regions of the images collected
during the first few seconds. The region showing the largest
change in center-of-mass (CoM) during this time was set to
the initial foreground mask. For all subsequent frames, the new
foreground mask was taken to be the region with CoM nearest
to that of the previous foreground mask.
Intra-Frame Matching: During intra-frame feature

matching, incorrect matches were detected and removed
based on the epipolar geometrical constraint [27]. This con-
straint reduces the feature matching problem from a 2-D
(image) search to a line search. Furthermore, by applying an

appropriate transform to the 2-D images (a process termed
rectification), the line search may be confined to image rows.
We computed the 2-D rectifying transform for each camera
using the method in [30] and applied it to the feature points
in candidate matches. If the two features in a candidate match
were not within five rows of each other the match was rejected.
Pose Estimation: During pose estimation, outliers were re-

jected in a stratified process. The first stage involved discrim-
ination based on the modified Z-score [31]. For a vector

, the modified Z-score, , for the th ele-
ment of is given by

(12)

where

(13)

and is the sample median. According to [31], an entry may be
considered an outlier if . Therefore, in each G-N iter-
ation, data points resulting in reprojection errors satisfying this
inequality were rejected. The second stage of outlier rejection
involved discrimination based on an absolute reprojection error
threshold of two pixels. This was applied for the final four (/10)
iterations.
Pose Checking: To ensure the final pose was sensible we

tested for convergence of the correction term, , after 10 it-
erations. If this check failed, the estimated pose for the frame
was set to the previous estimate and no new landmarks gener-
ated from the frame were added to the database.

III. EXPERIMENTAL VALIDATION

A. Rat Phantom

We performed an initial validation of the markerless tracking
system using a taxidermal rat head phantom derived from an
adult Sprague Dawley specimen. Fig. 1 shows a photograph of
the setup. The phantom was attached rigidly to the end-effector
of the six-axis robot and moved according to the motion of an
awake rat [11]. The original motion sequence comprised 5000
poses of a rat’s head collected over approximately 3 min at a
sampling rate of 30 Hz. To eliminate motion blur as a potential
source of error in the validation, the sequence was executed as
a series of static poses, with the robot pausing between poses
to allow for a frame to be collected by the markerless tracking
system. All frames were streamed to disk for offline processing.
The motion sequence was then repeated with marker-based mo-
tion tracking using the MicronTracker (Claron Technology Inc.,
Toronto, ON, Canada) [32] in conjunction with a marker we
have used previously for rat studies [11], [23]. The marker com-
prised three coplanar “checkerboard” points printed on an area
approximately mm . Repeatability of the robot move-
ments was .
To compare pose estimates from the two tracking systems

with the known applied robot movements, a spatial cross-cal-
ibration was performed between each tracking system and
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Fig. 5. Cross-calibration rigs. Rig used to cross-calibrate the robot to the mark-
erless tracking system (a) and the MicronTracker (b). To cross-calibrate the
markerless tracking system to the microPET we used the rig in (c). This had
a molecular sieve (seen at the intersection of the black/white regions) with
adsorbed. Cross-calibration methodology is described in [32].

Fig. 6. Integration of the markerless tracking system with the Focus 220
scanner.

the robot. This was performed similarly to the method in
[32], using an appropriate calibration target for each system
[Fig. 5(a) and (b)].

B. Live Rat Validation

The markerless tracking system was fitted to the microPET
Focus 220 scanner (Preclinical Solutions, Siemens Healthcare
Molecular Imaging, USA) using an aluminum frame that locked
into the mounting unit in place of the pallet (Fig. 6). Two flexible
strips of white LEDs glued to the inside of the microPET bore
provided sufficient lighting to use an image exposure time of 5
ms for each camera. The tracker and scanner data streams were
synchronized by sending a TTL pulse from the tracker to the
gating input of the scanner at the start of each frame exposure
(see [11] for further details). Spatial cross-calibration between
the tracker and scanner was performed similarly to the method
in [32], using the calibration target shown in Fig. 5(c).
Under an approved institutional animal ethics protocol,

an adolescent male Sprague–Dawley rat was acclimatized
over several days (30 min/day) to an open-ended tube inside
the scanner. The rat was injected via the tail vein with ap-
proximately 50 MBq and scanned 20 min later
unanesthetized in the tube for 10 min in conjunction with
markerless motion tracking. A second 10-min emission scan
(started 45 min postinjection) was performed after adding
several markings on the cheeks and around the eyes of the rat
using a permanent marker pen. This was to test the benefit of
amplifying the number of detectable features on relatively rigid

parts of the face. For both scans, tracking was performed at 30
fps, leading to a total of 17000 frames/camera. Finally, a 20 min
emission scan (started 90 min postinjection) was acquired with
the rat under 1.5% isoflurane/ gas anesthesia. Data from this
scan were used as a motion-free reference.
We note that although a tracer like would not, in

general, necessitate awake animal imaging, it was chosen here
for its broad uptake in the brain and other head structures, en-
abling easier visualization of the effect of motion correction on
the resulting images.
Tracker data collected during the awake studies were pro-

cessed offline to obtain a pose estimate for each of the 17000
frames, as described in Section IIC-G. Pose estimates were used
within an event-driven list mode motion compensation recon-
struction algorithm [33] to obtain images of the
distribution in the rat brain. Calculated attenuation correction
was applied as a pre-correction. In the reconstruction we used
an isotropic, spatially-invariant point spread function, modeled
as the weighted sum of two Gaussians (FWHM 1.3 and 4.5 mm,
respectively, and ratio 0.05). The reconstructed pixel size was

mm mm mm.
To further assess the reliability of pose estimates, the 3-D co-

ordinates corresponding to the center of each eye and the nose
tip were obtained manually from the initial frame, then for all
subsequent frames these test points were transformed according
to the estimated pose and reprojected according to (3b). Robust-
ness of the pose estimates using this method is indicated by close
correspondence of the reprojected features with the eyes and
nose tip.

IV. RESULTS

A. Camera Calibration

The mean calibration accuracy for the multi-camera setup,
measured in terms of the reprojection error, was 0.12 pixels
0.12 pixels. At our working distance of 350 mm this repre-

sented a positional accuracy on the surface of the rat’s head of
approximately 0.025 mm 0.025 mm.

B. Phantom Study

Fig. 7 shows the number of landmarks accumulated in the
database as a function of frame number for the phantom study.
Approximately 1500 landmarks were collected over 5000
frames. The rate of detection of new landmarks increased
noticeably whenever the head moved to a previously unseen
orientation (indicated by arrows in Fig. 7).
Fig. 8 shows the estimated rotation about the -axis over the

last 500 poses. There was excellent agreement between the ap-
plied robot motion (black) and the markerless estimate (green).
By comparison, the marker-based estimate (red) exhibited bias
of 3 –4 and also the characteristic jitter associated with small
markers [11], [34]. The comparison was similar for the other de-
grees-of-freedom (dof).
Fig. 9 shows the distribution of database landmarks based

on the marker-based [red dots, Fig. 9(a)] and markerless [green
dots, Fig. 9(b)] motion estimates, in each case superimposed on
the ground truth distribution (black circles). A magnified view
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Fig. 7. Cumulative number of landmarks as a function of pose number for the
taxidermal rat phantom. Arrows indicate occasions where the rate of new land-
marks increased due to the head moving to a previously unseen orientation.

Fig. 8. Last 500 poses of the -axis rotation component of motion of the
phantom: applied robot motion (black), marker-based motion estimation (red),
and markerless motion estimation (green). Note that the (green) markerless
estimate almost exactly overlays the known motion.

of one area of the head is shown in Fig. 10 to indicate the rel-
ative mismatch between the estimated and true landmark dis-
tributions. Overall mismatch was quantified as the root mean
square (rms) of the vector displacement between estimated and
ground truth locations, computed over all landmarks. RMS error
was 1.8 mm and 0.15 mm for the marker-based and markerless
motion tracking systems, respectively.

C. Live Rat Study

Fig. 11 shows an example of the feature detection with and
without added face markings. When face markings were used,
SIFT features tended to concentrate at these locations leading
to an increased number of features for matching, and 7000 ad-
ditional landmarks in the database (Fig. 12).
Estimated head rotation about the -axis, with and without

the use of face markings, is shown in Fig. 13. For each sce-
nario, six images exemplifying the range of head motion during
the scan are shown. Without face markings [Fig. 13(a)], the al-
gorithm failed to converge to a head pose solution in 44% of
frames. By comparison, with face markings we obtained a head
pose estimate in 99.1% of frames [Fig. 13(b)].
Comparing the alignment of measured and estimated (repro-

jected) facial structures, there was frequent (59%) misalignment
4 pixels when face markings were not used. By contrast, with

face markings the alignment was within 4 pixels for all test fea-
tures in approximately 80% of frames.

Fig. 9. Distribution of landmarks compared to ground truth for the taxidermal
rat. Plots show the complete distribution of landmarks for the marker-based (a)
and markerless (b) motion tracking approaches. Black circles represent ground
truth.

Fig. 10. Zoomed distribution of landmarks compared to ground truth. The
zoomed region corresponds to the black box in Fig. 9(a). Degree of mismatch
between landmarks obtained using marker-based (red dots) (a) and markerless
(green dots) (b) motion tracking relative to the ground truth landmark locations
(black circles).

Fig. 14 shows the reconstructed distribution in
the rat brain with and without motion compensation, and with
and without face markings. Regardless of whether face marking
was used, motion compensation provided an obvious improve-
ment compared to nomotion correction. The Harderian and sali-
vary glands, lying outside the brain, were the brightest struc-
tures in all images. However, because of their small size, these
structures were more susceptible to partial volume-like effects
caused by inaccuracies in the motion data. Thus, the global peak
voxel values after motion correction were lower than for the mo-
tion-free case. Nevertheless, in the brain, activity and contrast
recovery was promising: for the unmarked rat, peak activity and
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Fig. 11. SIFT features detected for the live rat without (left) and with (right)
added face markings.

Fig. 12. Cumulative number of landmarks as a function of frame number for
the live rat without (blue) and with (red) added face markings.

local contrast (measured as the local peak height) in the striatal
profile shown in Fig. 15 were 88% and 41%, respectively. Cor-
responding values for the marked rat were 93% and 50%.
This confirms what is apparent qualitatively in Fig. 14:

motion correction—and therefore the underlying motion esti-
mates—were superior in the marked rat (see arrows in Fig. 14).
This is in spite of more frequent and larger amplitude motion
during this particular study. In Fig. 14, examples of the reduced
motion artifact and increased contrast throughout the head
obtained using facial marking are indicated by the red and blue
arrows, respectively.

V. DISCUSSION

We have developed a stereoscopic tracking system and asso-
ciated algorithms to measure continuous rigid-body head mo-
tion of an animal without the need for attached markers. A
four-camera implementation of the systemwas validated in both
a phantom study and in live animal PET imaging experiments.
The method comprises mostly standard algorithms and hard-
ware; our effort has been to integrate these disparate compo-
nents into a coherent system for scalable multi-view marker-
less tracking of rapid and continuous, fully general rigid-body
head motion of rats, and to demonstrate its feasibility for mo-
tion-compensated preclinical imaging. We believe preclinical
imaging is a key area of application for motion tracking since
it would allow studies on awake animals and thereby enable a
range of new experiments that depend on the subject being con-
scious (see Section I for examples).
In the phantom study, the positional accuracy of head land-

marks using markerless pose estimates was approximately ten

times better than using pose estimates from a high performance
commercially available marker-based tracking system. This re-
sult is less surprising when one considers that the accuracy and
precision of pose estimates obtained from sparse feature-based
models generally improves as the number of features and/or
spread of features increases [34], [35]. The marker used in
the phantom study had three features (the minimum needed
for pose estimation) distributed over an area of approximately
0.6 . By contrast, the markerless system utilized 10–100
features from each camera over a surface area of approximately
20 (i.e., the entire face).
In the live animal experiments, ground truth motion data were

not available as in the phantom study. Instead, we relied on the
quality of the motion-corrected PET images, relative to the mo-
tion-free image, as a surrogate measure of tracking accuracy.
Residual errors and blurring in the motion-corrected reconstruc-
tions (Fig. 14) suggest that the tracking accuracy was some-
what poorer than the PET spatial resolution ( 1.2 mm), and
certainly not as accurate as for the phantom study. Overall, the
motion-corrected images were comparable to images obtained
previously using marker-based tracking [11].
In order for pose estimates from sparse feature-based models

to improve with more features, or a greater spread of features (as
described above), the extra information must outweigh the con-
tribution of noise [36]. This helps to explain the poorer tracking
obtained in the live animal studies: there was a key source of
noise in these studies that was not present in the phantom study,
namely nonrigid features. Nonrigid features are features whose
motion is not tightly coupled to brain motion. Examples include
background features, and features on the neck, ears, eyes, nose,
and whiskers. Indeed, of the features remaining on the neck/face
after background subtraction, we found typically 50% or more
were concentrated on nonrigid structures.
Two strategies were used to reduce the impact of nonrigid

features on the head. The first was to reduce the relative propor-
tion of nonrigid features (outliers) by amplifying the number of
inliers—that is, features on stable parts of the head. We did this
by making arbitrary, indelible marks on the fur with a marker
pen, in areas away from the eyes, nose, whiskers, and ears.
The marks took only a matter of seconds to apply and had no
observable impact on the animal’s behavior. The approach is
akin to the projected light patterns used in structured light tech-
niques to assist feature detection and matching. Importantly, ap-
plying marks did not share the disadvantages of using attached
markers (see Section I). The second strategy used to reduce the
impact of nonrigid features was to incorporate stratified statis-
tical and absolute threshold-based outlier rejection into the G-N
pose estimation procedure. This method enforced a reprojec-
tion error consistency condition that eliminated features moving
nonrigidly by 2 pixels and tended to constrain the data used for
pose estimation to be highly conformant to a rigid-body model.
The effectiveness of these strategies is borne out in the re-

sults. When markings were used, reprojected test features con-
sistently aligned to the anatomical test landmarks to within four
pixels, even when only a small fraction of the head was visible
(Fig. 13(b), third from left); a sensible pose solution was found
for nearly every frame; and despite the rat exhibiting larger and
more frequent movement during the study in which markings
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Fig. 13. X-axis rotation component of the estimated head motion of the awake rat without (a) and with (b) face markings. In each case six images (acquired using
camera 1) at various stages in the study are shown to indicate the range of rat head movement. Image borders are color-coded with the vertical bars drawn on the
corresponding graph to indicate where in the sequence the image occurred. Overlaid on these images is a green triangle which, for reliable pose estimates, should
connect the two eye centers and nose tip. See main text for details.

Fig. 14. Transverse (top row), coronal (middle row), and sagittal (bottom row)
reconstructed slices of the F-FDG distribution in the rat brain. Blue arrows
indicate examples of reduced motion artifact in the “markings” case compared
to the “no markings” case. Similarly, red arrows indicate examples of increased
contrast throughout the head for the “markings” case compared to the “no mark-
ings” case. Green bars (coronal slice of the motion-free image) indicate the level
at which the coronal profiles in Fig. 15 were obtained.

were applied [compare Fig. 13(a) and (b)], the motion-compen-
sated images were visually and quantitatively closer to the mo-

tion-free case than for the unmarked case. By contrast, when the
rat was unmarked, the likelihood that very few (or even insuffi-
cient) features remained for pose estimation after applying out-
lier rejection increased dramatically such that a sensible pose
solution was obtained in 50% of frames; and the likelihood
that outliers (nonrigid features) outnumbered inliers (rigid fea-
tures) also increased, leading to more incorrect poses and jitter.
Other strategies (not implemented here) could be used to re-

duce the impact of nonrigid features. For example, the back-
ground masking could be extended to segment specific regions
of the face and restrict processing to regions containing only
rigid features. Systematic pruning of unreliable features from
the database would also reduce the likelihood of false matches,
and reduce the size of the search when matching features to the
database. Another possibility is to estimate pose using a robust
estimator such as random sampling with consensus (RANSAC)
[37]. Finally, a more general approach is to incorporate error
modeling in the processing—keeping up-to-date information on
the uncertainty of each landmark (in the form of a covariance
matrix), updating this uncertainty each time the landmark is
reobserved, and weighting each landmark in the pose estima-
tion according to its uncertainty. Such an approach is typical in
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Fig. 15. Striatal profiles of F-FDG uptake (arbitrary units) measured on the
respective coronal slices of Fig. 14, at the level indicated by the green bars in
Fig. 14.

SLAM for mobile robotics (e.g., [17]) and is easily transferable
to this application. In future work, we plan to explore each of
these strategies as an alternative to marking the fur.
There are several aspects of the algorithms underlying our

markerless tracking system that make it particularly flexible and
which help to generate robust pose estimates. Firstly, the camera
calibration procedure allows it to be multi-view scalable: that is,
it allows for any number of cameras, positioned arbitrarily. Sec-
ondly, an important benefit of our 3D-2D registration approach
for pose estimation is that even features observed by a single
camera can be used to constrain the estimate. And thirdly, the
collection of a landmark database means that poses are com-
puted using information up to and including the initial frame.
This makes it less prone to drift than purely frame-to-frame
methods such as [43] (see below for a discussion of drift).
Drift is an important issue to consider when comparing

marker-based and markerless tracking. Drift refers to steadily
worsening pose estimation over time. Marker-based tracking is
not, in general, susceptible to drift since each pose is computed
independently. By contrast, the markerless tracking approach
relies on previous information (landmarks collected since the
initial frame), potentially making it susceptible to drift caused
by the accumulation of error in landmark locations. However,
in the phantom study there was no evidence of drift over the
5000 frames. The fact that all features were rigid would have
helped here. In the live animal studies, the robust alignment
of reprojected test features suggest that drift was minimal over
the 20 min period. However, further work is needed to properly
assess the likelihood and impact of drift in real subjects. The
error modelling described above would function to counteract
drift and should also be investigated in future work.
In this work, we did not make any attempt to optimize the

processing speed of markerless tracking. With the current
implementation, processing 5000 frames in the phantom study
took approximately 3.5 h: 0.5 h for SIFT feature detection on
a Dell M610 Blade with two 2.8-GHz Xeon Processors which
allowed 12 cores to run 24 threads simultaneously with hyper-
threading, and 3 h for landmark generation and pose estimation
using a 4-core Intel Xeon 1.86-GHz processor. Processing

frames in the live animal studies took approximately
10 h.

There are several ways to improve processing efficiency. Fea-
ture detection could be sped up by using faster scale-invariant
feature detectors (e.g., [38], [39]), GPU implementations [40],
or non-scale-invariant feature detectors (e.g., [41]). However, to
be useful for this application, the feature detector must maintain
high specificity on furry textures. The pose processing compo-
nent could be sped up by improving the efficiency of the data-
base search—either by using a more directed search of the most
likely match candidates [17], [19] or, alternatively, by reducing
the overall size of the database. Examples of the latter include
regularly pruning the database of descriptors with low speci-
ficity, or initializing a new database whenever a certain quota of
landmarks is reached and globally aligning the databases post
hoc [42].
The only similar markerless tracking system and application

we are aware of is that described by Goddard for head tracking
of mice in single photon emission computed tomography
(SPECT) [43], [44], though this system does not appear to have
been applied in animal studies yet. In that approach, corner
features detected in one frame were tracked into the next frame
using cross-correlation. This frame-frame tracking requires
the concatenation of successive pose estimates to compute
the change at any given time with respect to the initial pose.
Therefore, it may be more susceptible to drift compared to our
method which makes use of all features detected since the start
of the scan.
In summary, markerless tracking appears very promising for

enabling accurate motion-compensated imaging of awake an-
imals. These initial results demonstrate encouraging accuracy
and precision, and a large range of detectable motion. The re-
sults also suggest that further improvements in performance
could be achieved through robust handling of nonrigid features.
In addition to this optimization, and improved processing effi-
ciency, we also plan to explore the potential for this method to be
translated to the clinical setting and to other imaging modalities.

VI. CONCLUSION

We have developed a markerless tracking system and demon-
strated the feasibility of using this system to obtain highly ac-
curate ( 0.2 mm rms error) six dof pose estimates for contin-
uous motion. The system is based on a SLAM framework and
involves identifying a consistent set of landmarks on the head
for pose estimation. Pose estimates obtained for realistic head
motion of a taxidermal rat were more accurate by an order-of-
magnitude compared to those obtained from a state-of-the-art
marker-based system. The feasibility of using the approach for
accurate motion compensated PET imaging of an awake rat was
also demonstrated. There is considerable potential for further
development to improve the accuracy, precision and computa-
tional efficiency of the system, and to adapt it to the clinical
setting with PET and other modalities.
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